0915CXH_DL_SA/SADetectModel/SaDetectModel.py
2023-09-17 00:46:14 +08:00

142 lines
4.8 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:andrew
@file:SaDetectModel.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2023/09/16
"""
from torch import nn
class BasicBlock_1d(nn.Module):
expansion = 1
def __init__(self, input_channel, output_channel, stride=1):
super(BasicBlock_1d, self).__init__()
self.left = nn.Sequential(
nn.Conv1d(in_channels=input_channel, out_channels=output_channel,
kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm1d(output_channel),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=output_channel, out_channels=output_channel,
kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm1d(output_channel)
)
self.right = nn.Sequential()
if stride != 1 or input_channel != self.expansion * output_channel:
self.right = nn.Sequential(
nn.Conv1d(in_channels=input_channel, out_channels=output_channel * self.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(self.expansion * output_channel)
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.left(x)
residual = self.right(x)
out += residual
out = self.relu(out)
return out
class ResNet_1d(nn.Module):
def __init__(self, block, number_block, num_classes=2):
super(ResNet_1d, self).__init__()
self.in_channel = 64
self.conv1 = nn.Conv1d(in_channels=1, out_channels=self.in_channel,
kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block=block, out_channel=64, num_block=number_block[0], stride=1)
self.layer2 = self._make_layer(block=block, out_channel=128, num_block=number_block[1], stride=2)
self.layer3 = self._make_layer(block=block, out_channel=256, num_block=number_block[2], stride=2)
self.layer4 = self._make_layer(block=block, out_channel=512, num_block=number_block[3], stride=2)
# self.layer5 = self._make_layer(block=block, out_channel=512, num_block=number_block[4], stride=2)
self.pool2 = nn.AdaptiveAvgPool1d(1)
self.features = nn.Sequential(
# nn.Linear(in_features=1024, out_features=nc),
nn.Flatten(),
# nn.Linear(in_features=512 * 23, out_features=512),
nn.Linear(in_features=512, out_features=num_classes)
# nn.Softmax()
# nn.Sigmoid()
)
# self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channel, num_block, stride):
strides = [stride] + [1] * (num_block - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channel, out_channel, stride))
self.in_channel = out_channel * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.pool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# x = self.layer5(x)
x = self.pool2(x)
x = x.view(x.size(0), -1)
x = self.features(x)
return x
class ResNet18_LSTM_1d_v2(ResNet_1d):
def __init__(self, block, number_block, num_classes, hidden_size, num_layers, bidirectional):
super(ResNet18_LSTM_1d_v2, self).__init__(
block=block,
number_block=number_block,
num_classes=num_classes
)
# self.pool3 = nn.MaxPool1d(4)
self.lstm = nn.LSTM(input_size=512,
hidden_size=hidden_size,
num_layers=num_layers,
bidirectional=bidirectional,
batch_first=True)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.pool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.transpose(2, 1)
x, (h_n1, c_n1) = self.lstm(x)
x = x[:, -1, :]
x = self.features(x)
return x
def ResNet18_v2_LSTM():
return ResNet18_LSTM_1d_v2(BasicBlock_1d, [2, 2, 2, 2],
num_classes=2, hidden_size=512, num_layers=2, bidirectional=False)
if __name__ == '__main__':
# from torchinfo import summary
# resnet = ResNet18_v2_LSTM().cuda()
# summary(resnet, (4, 1, 300))
pass