Refactor imports in __init__.py, enhance resp_movement handling in HYS_process.py, and update HYS_config.yaml for movement revision parameters

This commit is contained in:
marques 2025-11-06 17:15:14 +08:00
parent 998890377b
commit 2a2604a323
9 changed files with 140 additions and 70 deletions

View File

@ -28,7 +28,7 @@ import numpy as np
import signal_method import signal_method
import os import os
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
os.environ['DISPLAY'] = "localhost:10.0" os.environ['DISPLAY'] = "localhost:14.0"
def process_one_signal(samp_id): def process_one_signal(samp_id):
signal_path = list((org_signal_root_path / f"{samp_id}").glob("OrgBCG_Sync_*.txt")) signal_path = list((org_signal_root_path / f"{samp_id}").glob("OrgBCG_Sync_*.txt"))
@ -127,33 +127,23 @@ def process_one_signal(samp_id):
) )
print(f"resp_movement_mask_shape: {resp_movement_mask.shape}, num_movement: {np.sum(resp_movement_mask == 1)}, count_movement_positions: {len(resp_movement_position_list)}") print(f"resp_movement_mask_shape: {resp_movement_mask.shape}, num_movement: {np.sum(resp_movement_mask == 1)}, count_movement_positions: {len(resp_movement_position_list)}")
else: else:
resp_movement_mask = None resp_movement_mask, resp_movement_position_list = None, None
print("resp_movement_mask is None") print("resp_movement_mask is None")
if resp_movement_mask is not None: resp_movement_revise_conf = conf.get("resp_movement_revise", None)
# 左右翻转resp_data if resp_movement_mask is not None and resp_movement_revise_conf is not None:
reverse_resp_data = resp_data[::-1] resp_movement_mask, resp_movement_position_list = signal_method.movement_revise(
_, resp_movement_mask_reverse, _, resp_movement_position_list_reverse = signal_method.detect_movement( signal_data=resp_data,
signal_data=reverse_resp_data, movement_mask=resp_movement_mask,
movement_list=resp_movement_position_list,
sampling_rate=resp_fs, sampling_rate=resp_fs,
**resp_movement_conf **resp_movement_revise_conf
) )
print(f"resp_movement_mask_reverse_shape: {resp_movement_mask_reverse.shape}, num_movement_reverse: {np.sum(resp_movement_mask_reverse == 1)}, count_movement_positions_reverse: {len(resp_movement_position_list_reverse)}") print(f"After revise, resp_movement_mask_shape: {resp_movement_mask.shape}, num_movement: {np.sum(resp_movement_mask == 1)}")
# 将resp_movement_mask_reverse翻转回来
resp_movement_mask_reverse = resp_movement_mask_reverse[::-1]
else: else:
resp_movement_mask_reverse = None print("resp_movement_mask revise is skipped")
print("resp_movement_mask_reverse is None")
# 取交集
if resp_movement_mask is not None and resp_movement_mask_reverse is not None:
combined_resp_movement_mask = np.logical_and(resp_movement_mask, resp_movement_mask_reverse).astype(int)
resp_movement_mask = combined_resp_movement_mask
print(f"combined_resp_movement_mask_shape: {combined_resp_movement_mask.shape}, num_combined_movement: {np.sum(combined_resp_movement_mask == 1)}")
else:
print("combined_resp_movement_mask is None")
# 分析Resp的幅值突变区间 # 分析Resp的幅值突变区间
if resp_movement_mask is not None: if resp_movement_mask is not None:
@ -246,4 +236,4 @@ if __name__ == '__main__':
all_samp_disable_df = utils.read_disable_excel(disable_df_path) all_samp_disable_df = utils.read_disable_excel(disable_df_path)
process_one_signal(select_ids[5]) process_one_signal(select_ids[0])

View File

@ -32,13 +32,21 @@ resp_low_amp:
resp_movement: resp_movement:
window_size_sec: 20 window_size_sec: 20
stride_sec: 1 stride_sec: 1
std_median_multiplier: 3.5 std_median_multiplier: 5
compare_intervals_sec: compare_intervals_sec:
- 60 - 60
- 90 - 120
- 180
interval_multiplier: 3.5 interval_multiplier: 3.5
merge_gap_sec: 30 merge_gap_sec: 30
min_duration_sec: 2 min_duration_sec: 1
resp_movement_revise:
up_interval_multiplier: 3
down_interval_multiplier: 1.5
compare_intervals_sec: 30
merge_gap_sec: 10
min_duration_sec: 1
bcg: bcg:
downsample_fs: 100 downsample_fs: 100

View File

@ -1 +1 @@
from draw_tools.draw_statics import draw_signal_with_mask from .draw_statics import draw_signal_with_mask

View File

@ -222,7 +222,10 @@ def draw_signal_with_mask(samp_id, signal_data, resp_data, bcg_data, signal_fs,
ax1 = fig.add_subplot(3, 1, 2, sharex=ax0) ax1 = fig.add_subplot(3, 1, 2, sharex=ax0)
ax1.plot(np.linspace(0, len(resp_data) // resp_fs, len(resp_data)), resp_data, color='orange') ax1.plot(np.linspace(0, len(resp_data) // resp_fs, len(resp_data)), resp_data, color='gray', alpha=0.5)
resp_data_no_movement = resp_data.copy()
resp_data_no_movement[resp_movement_mask.repeat(int(resp_fs)) == 1] = np.nan
ax1.plot(np.linspace(0, len(resp_data_no_movement) // resp_fs, len(resp_data_no_movement)), resp_data_no_movement, color='orange')
ax1.set_ylabel('Amplitude') ax1.set_ylabel('Amplitude')
# ax1.set_xticklabels([]) # ax1.set_xticklabels([])
ax1_twin = ax1.twinx() ax1_twin = ax1.twinx()

View File

@ -1 +1,3 @@
from signal_method.rule_base_event import detect_low_amplitude_signal, detect_movement, position_based_sleep_recognition_v2 from .rule_base_event import detect_low_amplitude_signal, detect_movement, position_based_sleep_recognition_v2
from .rule_base_event import movement_revise
from .time_metrics import calc_mav

View File

@ -1,6 +1,7 @@
from utils.operation_tools import timing_decorator from utils.operation_tools import timing_decorator
import numpy as np import numpy as np
from utils import merge_short_gaps, remove_short_durations, event_mask_2_list from utils import merge_short_gaps, remove_short_durations, event_mask_2_list, collect_values
from signal_method.time_metrics import calc_mav
@timing_decorator() @timing_decorator()
@ -90,16 +91,16 @@ def detect_movement(signal_data, sampling_rate, window_size_sec=2, stride_sec=No
# else: # else:
# valid_std = original_window_std # valid_std = original_window_std
valid_std = original_window_std ##20250418新修改 valid_std = original_window_std ##20250418新修改
#---------------------- 方法一基于STD的体动判定 ----------------------# # ---------------------- 方法一基于STD的体动判定 ----------------------#
# 计算所有有效窗口标准差的中位数 # 计算所有有效窗口标准差的中位数
median_std = np.median(valid_std) median_std = np.median(valid_std)
# 当窗口标准差大于中位数的倍数,判定为体动状态 # 当窗口标准差大于中位数的倍数,判定为体动状态
std_movement = np.where(original_window_std > median_std * std_median_multiplier, 1, 0) std_movement = np.where((original_window_std > (median_std * std_median_multiplier)), 1, 0)
#------------------ 方法二:基于前后信号幅值变化的体动判定 ------------------# # ------------------ 方法二:基于前后信号幅值变化的体动判定 ------------------#
amplitude_movement = np.zeros(num_original_windows, dtype=int) amplitude_movement = np.zeros(num_original_windows, dtype=int)
# 定义基于时间粒度的比较间隔索引 # 定义基于时间粒度的比较间隔索引
@ -146,7 +147,6 @@ def detect_movement(signal_data, sampling_rate, window_size_sec=2, stride_sec=No
raw_movement_mask = raw_movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate] raw_movement_mask = raw_movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate]
movement_mask = movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate] movement_mask = movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate]
# 比较剔除的体动如果被剔除的体动所在区域有高于3std的幅值则不剔除 # 比较剔除的体动如果被剔除的体动所在区域有高于3std的幅值则不剔除
removed_movement_mask = (raw_movement_mask - movement_mask) > 0 removed_movement_mask = (raw_movement_mask - movement_mask) > 0
removed_movement_start = np.where(np.diff(np.concatenate([[0], removed_movement_mask])) == 1)[0] removed_movement_start = np.where(np.diff(np.concatenate([[0], removed_movement_mask])) == 1)[0]
@ -155,8 +155,8 @@ def detect_movement(signal_data, sampling_rate, window_size_sec=2, stride_sec=No
for start, end in zip(removed_movement_start, removed_movement_end): for start, end in zip(removed_movement_start, removed_movement_end):
# print(start ,end) # print(start ,end)
# 计算剔除的体动区域的幅值 # 计算剔除的体动区域的幅值
if np.nanmax(signal_data[start*sampling_rate:(end+1)*sampling_rate]) > median_std * std_median_multiplier: if np.nanmax(signal_data[start * sampling_rate:(end + 1) * sampling_rate]) > median_std * std_median_multiplier:
movement_mask[start:end+1] = 1 movement_mask[start:end + 1] = 1
# raw体动起止位置 [[start, end], [start, end], ...] # raw体动起止位置 [[start, end], [start, end], ...]
raw_movement_position_list = event_mask_2_list(raw_movement_mask) raw_movement_position_list = event_mask_2_list(raw_movement_mask)
@ -164,25 +164,70 @@ def detect_movement(signal_data, sampling_rate, window_size_sec=2, stride_sec=No
# merge体动起止位置 [[start, end], [start, end], ...] # merge体动起止位置 [[start, end], [start, end], ...]
movement_position_list = event_mask_2_list(movement_mask) movement_position_list = event_mask_2_list(movement_mask)
return raw_movement_mask, movement_mask, raw_movement_position_list, movement_position_list return raw_movement_mask, movement_mask, raw_movement_position_list, movement_position_list
def movement_revise(signal_data, sampling_rate, movement_mask, movement_list, up_interval_multiplier: float,
down_interval_multiplier: float, compare_intervals_sec, merge_gap_sec, min_duration_sec):
def movement_revise(signal_data, sampling_rate, movement_mask, std_median_multiplier=4.5):
""" """
基于标准差对已有体动掩码进行修正 用于大尺度的体动检测后的位置修正 基于标准差对已有体动掩码进行修正 用于大尺度的体动检测后的位置精细修正
参数 参数
- signal_data: numpy array输入的信号数据 - signal_data: numpy array输入的信号数据
- sampling_rate: int信号的采样率Hz - sampling_rate: int信号的采样率Hz
- movement_mask: numpy array已有的体动掩码1表示体动0表示睡眠 - movement_mask: numpy array已有的体动掩码1表示体动0表示睡眠
- std_median_multiplier: float标准差中位数的乘数阈值默认值为 4.5
返回 返回
- revised_movement_mask: numpy array修正后的体动掩码 - revised_movement_mask: numpy array修正后的体动掩码
""" """
pass window_size = sampling_rate
stride_size = sampling_rate
time_points = np.arange(len(signal_data))
compare_size = int(compare_intervals_sec // (stride_size / sampling_rate))
_, mav = calc_mav(signal_data, movement_mask=None, low_amp_mask=None, sampling_rate=sampling_rate,
window_second=2, step_second=1,
inner_window_second=1)
# 往左右两边取compare_size个点的mav取平均值
for start, end in movement_list:
left_values = collect_values(arr=mav, index=start - 1, step=-1, limit=compare_size, mask=movement_mask)
right_values = collect_values(arr=mav, index=end + 5, step=1, limit=compare_size, mask=movement_mask)
left_value_metrics = np.median(left_values) if len(left_values) > 0 else 0
right_value_metrics = np.median(right_values) if len(right_values) > 0 else 0
if left_value_metrics == 0:
value_metrics = right_value_metrics
elif right_value_metrics == 0:
value_metrics = left_value_metrics
else:
value_metrics = np.mean([left_value_metrics, right_value_metrics])
# 逐秒遍历mav判断是否需要修正
# print(f"Revising movement from index {start} to {end}, left_mean: {left_value_mean:.2f}, right_mean: {right_value_mean:.2f}, mean: {value_mean:.2f}")
for i in range(start, end + 5):
# print(f"Index {i}, mav: {mav[i]:.2f}, left_mean: {left_value_mean:.2f}, right_mean: {right_value_mean:.2f}, mean: {value_mean:.2f}")
if mav[i] > (value_metrics * up_interval_multiplier):
movement_mask[i] = 1
# print(f"Movement revised at index {i}, mav: {mav[i]:.2f}, threshold: {value_mean * up_interval_multiplier:.2f}")
elif mav[i] < (value_metrics * down_interval_multiplier):
movement_mask[i] = 0
# print(f"Movement revised at index {i}, mav: {mav[i]:.2f}, threshold: {value_mean * down_interval_multiplier:.2f}")
# else:
# print(f"No revision at index {i}, mav: {mav[i]:.2f}, up_threshold: {value_mean * up_interval_multiplier:.2f}, down_threshold: {value_mean * down_interval_multiplier:.2f}")
#
# 如果需要合并间隔小的体动状态
if merge_gap_sec > 0:
movement_mask = merge_short_gaps(movement_mask, time_points, merge_gap_sec)
# 如果需要移除短时体动状态
if min_duration_sec > 0:
movement_mask = remove_short_durations(movement_mask, time_points, min_duration_sec)
movement_list = event_mask_2_list(movement_mask)
return movement_mask, movement_list
@ -335,10 +380,10 @@ def position_based_sleep_recognition_v1(signal_data, movement_mask, sampling_rat
# 新的end - start确保为200的整数倍 # 新的end - start确保为200的整数倍
if (left_end - left_start) % (mav_calc_window_sec * sampling_rate) != 0: if (left_end - left_start) % (mav_calc_window_sec * sampling_rate) != 0:
left_end = left_start + ((left_end - left_start) // (mav_calc_window_sec * sampling_rate)) * ( left_end = left_start + ((left_end - left_start) // (mav_calc_window_sec * sampling_rate)) * (
mav_calc_window_sec * sampling_rate) mav_calc_window_sec * sampling_rate)
if (right_end - right_start) % (mav_calc_window_sec * sampling_rate) != 0: if (right_end - right_start) % (mav_calc_window_sec * sampling_rate) != 0:
right_end = right_start + ((right_end - right_start) // (mav_calc_window_sec * sampling_rate)) * ( right_end = right_start + ((right_end - right_start) // (mav_calc_window_sec * sampling_rate)) * (
mav_calc_window_sec * sampling_rate) mav_calc_window_sec * sampling_rate)
# 计算每个片段的幅值指标 # 计算每个片段的幅值指标
left_mav = np.mean(np.max(signal_data[left_start:left_end].reshape(-1, mav_calc_window_sec * sampling_rate), left_mav = np.mean(np.max(signal_data[left_start:left_end].reshape(-1, mav_calc_window_sec * sampling_rate),
@ -431,11 +476,12 @@ def position_based_sleep_recognition_v2(signal_data, movement_mask, sampling_rat
# 新的end - start确保为200的整数倍 # 新的end - start确保为200的整数倍
if (end - start) % (mav_calc_window_sec * sampling_rate) != 0: if (end - start) % (mav_calc_window_sec * sampling_rate) != 0:
end = start + ((end - start) // (mav_calc_window_sec * sampling_rate)) * ( end = start + ((end - start) // (mav_calc_window_sec * sampling_rate)) * (
mav_calc_window_sec * sampling_rate) mav_calc_window_sec * sampling_rate)
# 计算每个片段的幅值指标 # 计算每个片段的幅值指标
mav = np.nanmean( mav = np.nanmean(
np.nanmax(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) - np.nanmean( np.nanmax(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate),
axis=0)) - np.nanmean(
np.nanmin(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) np.nanmin(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0))
segment_average_amplitude.append(mav) segment_average_amplitude.append(mav)

View File

@ -5,10 +5,14 @@ import numpy as np
@timing_decorator() @timing_decorator()
def calc_mav(signal_data, movement_mask, low_amp_mask, sampling_rate=100, window_second=10, step_second=1, inner_window_second=2): def calc_mav(signal_data, movement_mask, low_amp_mask, sampling_rate=100, window_second=10, step_second=1, inner_window_second=2):
assert len(movement_mask) * sampling_rate == len(signal_data), f"movement_mask 长度与 signal_data 长度不一致, {len(movement_mask) * sampling_rate} != {len(signal_data)}" if movement_mask is not None:
assert len(movement_mask) == len(low_amp_mask), f"movement_mask 和 low_amp_mask 长度不一致, {len(movement_mask)} != {len(low_amp_mask)}" assert len(movement_mask) * sampling_rate == len(signal_data), f"movement_mask 长度与 signal_data 长度不一致, {len(movement_mask) * sampling_rate} != {len(signal_data)}"
# print(f"movement_mask_length: {len(movement_mask)}, signal_data_length: {len(signal_data)}") # assert len(movement_mask) == len(low_amp_mask), f"movement_mask 和 low_amp_mask 长度不一致, {len(movement_mask)} != {len(low_amp_mask)}"
processed_mask = movement_mask.copy() # print(f"movement_mask_length: {len(movement_mask)}, signal_data_length: {len(signal_data)}")
processed_mask = movement_mask.copy()
else:
processed_mask = None
def mav_func(x): def mav_func(x):
return np.mean(np.nanmax(x.reshape(-1, inner_window_second*sampling_rate), axis=1) - np.nanmin(x.reshape(-1, inner_window_second*sampling_rate), axis=1)) / 2 return np.mean(np.nanmax(x.reshape(-1, inner_window_second*sampling_rate), axis=1) - np.nanmin(x.reshape(-1, inner_window_second*sampling_rate), axis=1)) / 2
mav_nan, mav = calculate_by_slide_windows(mav_func, signal_data, processed_mask, sampling_rate=sampling_rate, mav_nan, mav = calculate_by_slide_windows(mav_func, signal_data, processed_mask, sampling_rate=sampling_rate,

View File

@ -1,5 +1,6 @@
from utils.HYS_FileReader import read_label_csv, read_signal_txt, read_disable_excel from .HYS_FileReader import read_label_csv, read_signal_txt, read_disable_excel
from utils.operation_tools import load_dataset_conf, generate_disable_mask, generate_event_mask, event_mask_2_list from .operation_tools import load_dataset_conf, generate_disable_mask, generate_event_mask, event_mask_2_list
from utils.operation_tools import merge_short_gaps, remove_short_durations from .operation_tools import merge_short_gaps, remove_short_durations
from utils.event_map import E2N from .operation_tools import collect_values
from utils.signal_process import butterworth, average_filter, downsample_signal_fast, notch_filter, bessel from .event_map import E2N
from .signal_process import butterworth, average_filter, downsample_signal_fast, notch_filter, bessel

View File

@ -125,8 +125,8 @@ def remove_short_durations(state_sequence, time_points, min_duration_sec):
@timing_decorator() @timing_decorator()
def calculate_by_slide_windows(func, signal_data, calc_mask, sampling_rate=100, window_second=20, step_second=None): def calculate_by_slide_windows(func, signal_data, calc_mask, sampling_rate=100, window_second=20, step_second=None):
# 处理标志位长度与 signal_data 对齐 # 处理标志位长度与 signal_data 对齐
if calc_mask is None: # if calc_mask is None:
calc_mask = np.zeros(len(signal_data), dtype=bool) # calc_mask = np.zeros(len(signal_data), dtype=bool)
if step_second is None: if step_second is None:
step_second = window_second step_second = window_second
@ -157,18 +157,21 @@ def calculate_by_slide_windows(func, signal_data, calc_mask, sampling_rate=100,
values_nan = values_nan.repeat(step_second)[:origin_seconds] values_nan = values_nan.repeat(step_second)[:origin_seconds]
for i in range(len(values_nan)): if calc_mask is not None:
if calc_mask[i]: for i in range(len(values_nan)):
values_nan[i] = np.nan if calc_mask[i]:
values_nan[i] = np.nan
values = values_nan.copy() values = values_nan.copy()
# 插值处理体动区域的 NaN 值 # 插值处理体动区域的 NaN 值
def interpolate_nans(x, t): def interpolate_nans(x, t):
valid_mask = ~np.isnan(x) valid_mask = ~np.isnan(x)
return np.interp(t, t[valid_mask], x[valid_mask]) return np.interp(t, t[valid_mask], x[valid_mask])
values = interpolate_nans(values, np.arange(len(values))) values = interpolate_nans(values, np.arange(len(values)))
else:
values = values_nan.copy()
return values_nan, values return values_nan, values
@ -208,7 +211,20 @@ def generate_event_mask(signal_second: int, event_df):
def event_mask_2_list(mask): def event_mask_2_list(mask):
mask_start = np.where(np.diff(mask, append=0) == 1)[0] mask_start = np.where(np.diff(mask, append=0) == -1)[0]
mask_end = np.where(np.diff(mask, append=0) == -1)[0] + 1 mask_end = np.where(np.diff(mask, append=0) == 1)[0] + 1
event_list =[[start, end] for start, end in zip(mask_start, mask_end)] event_list =[[start, end] for start, end in zip(mask_start, mask_end)]
return event_list return event_list
def collect_values(arr: np.ndarray, index: int, step: int, limit: int, mask=None) -> list:
"""收集非 NaN 值,直到达到指定数量或边界"""
values = []
count = 0
mask = mask if mask is not None else arr
while count < limit and 0 <= index < len(mask):
if not np.isnan(mask[index]):
values.append(arr[index])
count += 1
index += step
return values