from utils.operation_tools import timing_decorator import numpy as np from utils import merge_short_gaps, remove_short_durations, event_mask_2_list @timing_decorator() def detect_movement(signal_data, sampling_rate, window_size_sec=2, stride_sec=None, std_median_multiplier=4.5, compare_intervals_sec=[30, 60], interval_multiplier=2.5, merge_gap_sec=10, min_duration_sec=5, low_amplitude_periods=None): """ 检测信号中的体动状态,结合两种方法:标准差比较和前后窗口幅值对比。 使用反射填充处理信号边界。 参数: - signal_data: numpy array,输入的信号数据 - sampling_rate: int,信号的采样率(Hz) - window_size_sec: float,分析窗口的时长(秒),默认值为 2 秒 - stride_sec: float,窗口滑动步长(秒),默认值为None(等于window_size_sec,无重叠) - std_median_multiplier: float,标准差中位数的乘数阈值,默认值为 4.5 - compare_intervals_sec: list,用于比较的时间间隔列表(秒),默认为 [30, 60] - interval_multiplier: float,间隔中位数的上限乘数,默认值为 2.5 - merge_gap_sec: float,要合并的体动状态之间的最大间隔(秒),默认值为 10 秒 - min_duration_sec: float,要保留的体动状态的最小持续时间(秒),默认值为 5 秒 - low_amplitude_periods: numpy array,低幅值期间的掩码(1表示低幅值期间),默认为None 返回: - movement_mask: numpy array,体动状态的掩码(1表示体动,0表示睡眠) """ # 计算窗口大小(样本数) window_samples = int(window_size_sec * sampling_rate) # 如果未指定步长,设置为窗口大小(无重叠) if stride_sec is None: stride_sec = window_size_sec # 计算步长(样本数) stride_samples = int(stride_sec * sampling_rate) # 确保步长至少为1 stride_samples = max(1, stride_samples) # 计算需要的最大填充大小(基于比较间隔) max_interval_samples = int(max(compare_intervals_sec) * sampling_rate) # 应用反射填充以正确处理边界 # 填充大小为最大比较间隔的一半,以确保边界有足够的上下文 pad_size = max_interval_samples padded_signal = np.pad(signal_data, pad_size, mode='reflect') # 计算填充后的窗口数量 num_windows = max(1, (len(padded_signal) - window_samples) // stride_samples + 1) # 初始化窗口标准差数组 window_std = np.zeros(num_windows) # 计算每个窗口的标准差 # 分窗计算标准差 for i in range(num_windows): start_idx = i * stride_samples end_idx = min(start_idx + window_samples, len(padded_signal)) # 处理窗口,包括可能不完整的最后一个窗口 window_data = padded_signal[start_idx:end_idx] if len(window_data) > 0: window_std[i] = np.std(window_data, ddof=1) else: window_std[i] = 0 # 计算原始信号对应的窗口索引范围 # 填充后,原始信号从pad_size开始 orig_start_window = pad_size // stride_samples if stride_sec == 1: orig_end_window = orig_start_window + (len(signal_data) // stride_samples) else: orig_end_window = orig_start_window + (len(signal_data) // stride_samples) + 1 # 只保留原始信号对应的窗口标准差 original_window_std = window_std[orig_start_window:orig_end_window] num_original_windows = len(original_window_std) # 创建时间点数组(秒) time_points = np.arange(num_original_windows) * stride_sec # # 如果提供了低幅值期间的掩码,则在计算全局中位数时排除这些期间 # if low_amplitude_periods is not None and len(low_amplitude_periods) == num_original_windows: # valid_std = original_window_std[low_amplitude_periods == 0] # if len(valid_std) == 0: # 如果所有窗口都在低幅值期间 # valid_std = original_window_std # 使用全部窗口 # else: # valid_std = original_window_std valid_std = original_window_std ##20250418新修改 #---------------------- 方法一:基于STD的体动判定 ----------------------# # 计算所有有效窗口标准差的中位数 median_std = np.median(valid_std) # 当窗口标准差大于中位数的倍数,判定为体动状态 std_movement = np.where(original_window_std > median_std * std_median_multiplier, 1, 0) #------------------ 方法二:基于前后信号幅值变化的体动判定 ------------------# amplitude_movement = np.zeros(num_original_windows, dtype=int) # 定义基于时间粒度的比较间隔索引 compare_intervals_idx = [int(interval // stride_sec) for interval in compare_intervals_sec] # 逐窗口判断 for win_idx in range(num_original_windows): # 全局索引(在填充后的窗口数组中) global_win_idx = win_idx + orig_start_window # 对每个比较间隔进行检查 for interval_idx in compare_intervals_idx: # 确定比较范围的结束索引(在填充后的窗口数组中) end_idx = min(global_win_idx + interval_idx, len(window_std)) # 提取相应时间范围内的标准差值 if global_win_idx < end_idx: interval_std = window_std[global_win_idx:end_idx] # 计算该间隔的中位数 interval_median = np.median(interval_std) # 计算上下阈值 upper_threshold = interval_median * interval_multiplier # 检查当前窗口是否超出阈值范围,如果超出则直接标记为体动 if window_std[global_win_idx] > upper_threshold: amplitude_movement[win_idx] = 1 break # 一旦确定为体动就不需要继续检查其他间隔 # 将两种方法的结果合并:只要其中一种方法判定为体动,最终结果就是体动 movement_mask = np.logical_or(std_movement, amplitude_movement).astype(int) raw_movement_mask = movement_mask # 如果需要合并间隔小的体动状态 if merge_gap_sec > 0: movement_mask = merge_short_gaps(movement_mask, time_points, merge_gap_sec) # 如果需要移除短时体动状态 if min_duration_sec > 0: movement_mask = remove_short_durations(movement_mask, time_points, min_duration_sec) # raw_movement_mask, movement_mask恢复对应秒数,而不是点数 raw_movement_mask = raw_movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate] movement_mask = movement_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate] # 比较剔除的体动,如果被剔除的体动所在区域有高于3std的幅值,则不剔除 removed_movement_mask = (raw_movement_mask - movement_mask) > 0 removed_movement_start = np.where(np.diff(np.concatenate([[0], removed_movement_mask])) == 1)[0] removed_movement_end = np.where(np.diff(np.concatenate([removed_movement_mask, [0]])) == -1)[0] for start, end in zip(removed_movement_start, removed_movement_end): # print(start ,end) # 计算剔除的体动区域的幅值 if np.nanmax(signal_data[start*sampling_rate:(end+1)*sampling_rate]) > median_std * std_median_multiplier: movement_mask[start:end+1] = 1 # raw体动起止位置 [[start, end], [start, end], ...] raw_movement_position_list = event_mask_2_list(raw_movement_mask) # merge体动起止位置 [[start, end], [start, end], ...] movement_position_list = event_mask_2_list(movement_mask) return raw_movement_mask, movement_mask, raw_movement_position_list, movement_position_list def movement_revise(signal_data, sampling_rate, movement_mask, std_median_multiplier=4.5): """ 基于标准差对已有体动掩码进行修正。 用于大尺度的体动检测后的位置修正 参数: - signal_data: numpy array,输入的信号数据 - sampling_rate: int,信号的采样率(Hz) - movement_mask: numpy array,已有的体动掩码(1表示体动,0表示睡眠) - std_median_multiplier: float,标准差中位数的乘数阈值,默认值为 4.5 返回: - revised_movement_mask: numpy array,修正后的体动掩码 """ pass @timing_decorator() def detect_low_amplitude_signal(signal_data, sampling_rate, window_size_sec=1, stride_sec=None, amplitude_threshold=50, merge_gap_sec=10, min_duration_sec=5): """ 检测信号中的低幅值状态,通过计算RMS值判断信号强度是否低于设定阈值。 参数: - signal_data: numpy array,输入的信号数据 - sampling_rate: int,信号的采样率(Hz) - window_size_sec: float,分析窗口的时长(秒),默认值为 1 秒 - stride_sec: float,窗口滑动步长(秒),默认值为None(等于window_size_sec,无重叠) - amplitude_threshold: float,RMS阈值,低于此值表示低幅值状态,默认值为 50 - merge_gap_sec: float,要合并的状态之间的最大间隔(秒),默认值为 10 秒 - min_duration_sec: float,要保留的状态的最小持续时间(秒),默认值为 5 秒 返回: - low_amplitude_mask: numpy array,低幅值状态的掩码(1表示低幅值,0表示正常幅值) """ # 计算窗口大小(样本数) window_samples = int(window_size_sec * sampling_rate) # 如果未指定步长,设置为窗口大小(无重叠) if stride_sec is None: stride_sec = window_size_sec # 计算步长(样本数) stride_samples = int(stride_sec * sampling_rate) # 确保步长至少为1 stride_samples = max(sampling_rate, stride_samples) # 处理信号边界,使用反射填充 pad_size = window_samples // 2 padded_signal = np.pad(signal_data, pad_size, mode='reflect') # 计算填充后的窗口数量 num_windows = max(1, (len(padded_signal) - window_samples) // stride_samples + 1) # 初始化RMS值数组 rms_values = np.zeros(num_windows) # 计算每个窗口的RMS值 for i in range(num_windows): start_idx = i * stride_samples end_idx = min(start_idx + window_samples, len(signal_data)) # 处理窗口,包括可能不完整的最后一个窗口 window_data = signal_data[start_idx:end_idx] if len(window_data) > 0: rms_values[i] = np.sqrt(np.mean(window_data ** 2)) else: rms_values[i] = 0 # 生成初始低幅值掩码:RMS低于阈值的窗口标记为1(低幅值),其他为0 low_amplitude_mask = np.where(rms_values <= amplitude_threshold, 1, 0) # 计算原始信号对应的窗口索引范围 orig_start_window = pad_size // stride_samples if stride_sec == 1: orig_end_window = orig_start_window + (len(signal_data) // stride_samples) else: orig_end_window = orig_start_window + (len(signal_data) // stride_samples) + 1 # 只保留原始信号对应的窗口低幅值掩码 low_amplitude_mask = low_amplitude_mask[orig_start_window:orig_end_window] # print("low_amplitude_mask_length: ", len(low_amplitude_mask)) num_original_windows = len(low_amplitude_mask) # 转换为时间轴上的状态序列 # 计算每个窗口对应的时间点(秒) time_points = np.arange(num_original_windows) * stride_sec # 如果需要合并间隔小的状态 if merge_gap_sec > 0: low_amplitude_mask = merge_short_gaps(low_amplitude_mask, time_points, merge_gap_sec) # 如果需要移除短时状态 if min_duration_sec > 0: low_amplitude_mask = remove_short_durations(low_amplitude_mask, time_points, min_duration_sec) low_amplitude_mask = low_amplitude_mask.repeat(stride_sec)[:len(signal_data) // sampling_rate] # 低幅值状态起止位置 [[start, end], [start, end], ...] low_amplitude_position_list = event_mask_2_list(low_amplitude_mask) return low_amplitude_mask, low_amplitude_position_list def get_typical_segment_for_continues_signal(signal_data, sampling_rate=100, window_size=30, step_size=1): """ 获取十个片段 :param signal_data: 信号数据 :param sampling_rate: 采样率 :param window_size: 窗口大小(秒) :param step_size: 步长(秒) :return: 典型片段列表 """ pass # 基于体动位置和幅值的睡姿识别 # 主要是依靠体动mask,将整夜分割成多个有效片段,然后每个片段计算幅值指标,判断两个片段的幅值指标是否存在显著差异,如果存在显著差异,则认为存在睡姿变化 # 考虑到每个片段长度为10s,所以每个片段的幅值指标计算时间长度为10s,然后计算每个片段的幅值指标 # 仅对比相邻片段的幅值指标,如果存在显著差异,则认为存在睡姿变化,即每个体动相邻的30秒内存在睡姿变化,如果片段不足30秒,则按实际长度对比 @timing_decorator() def position_based_sleep_recognition_v1(signal_data, movement_mask, sampling_rate=100, window_size_sec=30, interval_to_movement=10): mav_calc_window_sec = 2 # 计算mav的窗口大小,单位秒 # 获取有效片段起止位置 valid_mask = 1 - movement_mask valid_starts = np.where(np.diff(np.concatenate([[0], valid_mask])) == 1)[0] valid_ends = np.where(np.diff(np.concatenate([valid_mask, [0]])) == -1)[0] movement_start = np.where(np.diff(np.concatenate([[0], movement_mask])) == 1)[0] movement_end = np.where(np.diff(np.concatenate([movement_mask, [0]])) == -1)[0] segment_left_average_amplitude = [] segment_right_average_amplitude = [] segment_left_average_energy = [] segment_right_average_energy = [] # window_samples = int(window_size_sec * sampling_rate) # pad_size = window_samples // 2 # padded_signal = np.pad(signal_data, pad_size, mode='reflect') for start, end in zip(valid_starts, valid_ends): start *= sampling_rate end *= sampling_rate # 避免过短的片段 if end - start <= sampling_rate: # 小于1秒的片段不考虑 continue # 获取当前片段数据 elif end - start < (window_size_sec * interval_to_movement + 1) * sampling_rate: left_start = start left_end = min(end, left_start + window_size_sec * sampling_rate) right_start = max(start, end - window_size_sec * sampling_rate) right_end = end else: left_start = start + interval_to_movement * sampling_rate left_end = left_start + window_size_sec * sampling_rate right_start = end - interval_to_movement * sampling_rate - window_size_sec * sampling_rate right_end = end # 新的end - start确保为200的整数倍 if (left_end - left_start) % (mav_calc_window_sec * sampling_rate) != 0: left_end = left_start + ((left_end - left_start) // (mav_calc_window_sec * sampling_rate)) * ( mav_calc_window_sec * sampling_rate) if (right_end - right_start) % (mav_calc_window_sec * sampling_rate) != 0: right_end = right_start + ((right_end - right_start) // (mav_calc_window_sec * sampling_rate)) * ( mav_calc_window_sec * sampling_rate) # 计算每个片段的幅值指标 left_mav = np.mean(np.max(signal_data[left_start:left_end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) - np.mean( np.min(signal_data[left_start:left_end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) right_mav = np.mean( np.max(signal_data[right_start:right_end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) - np.mean( np.min(signal_data[right_start:right_end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) segment_left_average_amplitude.append(left_mav) segment_right_average_amplitude.append(right_mav) left_energy = np.sum(np.abs(signal_data[left_start:left_end] ** 2)) right_energy = np.sum(np.abs(signal_data[right_start:right_end] ** 2)) segment_left_average_energy.append(left_energy) segment_right_average_energy.append(right_energy) position_changes = [] position_change_times = [] # 判断是否存在显著变化 (可根据实际情况调整阈值) threshold_amplitude = 0.1 # 幅值变化阈值 threshold_energy = 0.1 # 能量变化阈值 for i in range(1, len(segment_left_average_amplitude)): # 计算幅值指标的变化率 left_amplitude_change = abs(segment_left_average_amplitude[i] - segment_left_average_amplitude[i - 1]) / max( segment_left_average_amplitude[i - 1], 1e-6) right_amplitude_change = abs(segment_right_average_amplitude[i] - segment_right_average_amplitude[i - 1]) / max( segment_right_average_amplitude[i - 1], 1e-6) # 计算能量指标的变化率 left_energy_change = abs(segment_left_average_energy[i] - segment_left_average_energy[i - 1]) / max( segment_left_average_energy[i - 1], 1e-6) right_energy_change = abs(segment_right_average_energy[i] - segment_right_average_energy[i - 1]) / max( segment_right_average_energy[i - 1], 1e-6) # 如果左右通道中的任一通道同时满足幅值和能量的变化阈值,则认为存在姿势变化 left_significant_change = (left_amplitude_change > threshold_amplitude) and ( left_energy_change > threshold_energy) right_significant_change = (right_amplitude_change > threshold_amplitude) and ( right_energy_change > threshold_energy) if left_significant_change or right_significant_change: # 记录姿势变化发生的时间点 用当前分割的体动的起始位置和结束位置表示 position_changes.append(1) position_change_times.append((movement_start[i - 1], movement_end[i - 1])) else: position_changes.append(0) # 0表示不存在姿势变化 return position_changes, position_change_times def position_based_sleep_recognition_v2(signal_data, movement_mask, sampling_rate=100): """ :param signal_data: :param movement_mask: mask的采样率为1Hz :param sampling_rate: :param window_size_sec: :return: """ mav_calc_window_sec = 2 # 计算mav的窗口大小,单位秒 # 获取有效片段起止位置 valid_mask = 1 - movement_mask valid_starts = np.where(np.diff(np.concatenate([[0], valid_mask])) == 1)[0] valid_ends = np.where(np.diff(np.concatenate([valid_mask, [0]])) == -1)[0] movement_start = np.where(np.diff(np.concatenate([[0], movement_mask])) == 1)[0] movement_end = np.where(np.diff(np.concatenate([movement_mask, [0]])) == -1)[0] segment_average_amplitude = [] segment_average_energy = [] signal_data_no_movement = signal_data.copy() for start, end in zip(movement_start, movement_end): signal_data_no_movement[start * sampling_rate:end * sampling_rate] = np.nan # from matplotlib import pyplot as plt # plt.plot(signal_data, alpha=0.3, color='gray') # plt.plot(signal_data_no_movement, color='blue', linewidth=1) # plt.show() for start, end in zip(valid_starts, valid_ends): start *= sampling_rate end *= sampling_rate # 避免过短的片段 if end - start <= sampling_rate: # 小于1秒的片段不考虑 continue # 新的end - start确保为200的整数倍 if (end - start) % (mav_calc_window_sec * sampling_rate) != 0: end = start + ((end - start) // (mav_calc_window_sec * sampling_rate)) * ( mav_calc_window_sec * sampling_rate) # 计算每个片段的幅值指标 mav = np.nanmean( np.nanmax(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) - np.nanmean( np.nanmin(signal_data_no_movement[start:end].reshape(-1, mav_calc_window_sec * sampling_rate), axis=0)) segment_average_amplitude.append(mav) energy = np.nansum(np.abs(signal_data_no_movement[start:end] ** 2)) segment_average_energy.append(energy) position_changes = np.zeros(len(signal_data) // sampling_rate, dtype=int) position_change_times = [] # 判断是否存在显著变化 (可根据实际情况调整阈值) threshold_amplitude = 0.1 # 幅值变化阈值 threshold_energy = 0.1 # 能量变化阈值 for i in range(1, len(segment_average_amplitude)): # 计算幅值指标的变化率 amplitude_change = abs(segment_average_amplitude[i] - segment_average_amplitude[i - 1]) / max( segment_average_amplitude[i - 1], 1e-6) # 计算能量指标的变化率 energy_change = abs(segment_average_energy[i] - segment_average_energy[i - 1]) / max( segment_average_energy[i - 1], 1e-6) significant_change = (amplitude_change > threshold_amplitude) and (energy_change > threshold_energy) if significant_change: # 记录姿势变化发生的时间点 用当前分割的体动的起始位置和结束位置表示 position_changes[movement_start[i - 1]:movement_end[i - 1]] = 1 position_change_times.append((movement_start[i - 1], movement_end[i - 1])) return position_changes, position_change_times