DataPrepare/signal_method/normalize_method.py

37 lines
1.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import utils
import pandas as pd
import numpy as np
from scipy import signal
def normalize_resp_signal(resp_signal: np.ndarray, resp_fs, movement_mask, enable_list):
# 根据呼吸信号的幅值改变区间对每段进行Z-Score标准化
normalized_resp_signal = np.zeros_like(resp_signal)
# 全部填成nan
normalized_resp_signal[:] = np.nan
resp_signal_no_movement = resp_signal.copy()
resp_signal_no_movement[np.array(movement_mask == 1).repeat(resp_fs)] = np.nan
for i in range(len(enable_list)):
enable_start = enable_list[i][0] * resp_fs
enable_end = enable_list[i][1] * resp_fs
segment = resp_signal_no_movement[enable_start:enable_end]
# print(f"Normalizing segment {i+1}/{len(enable_list)}: start={enable_start}, end={enable_end}, length={len(segment)}")
segment_mean = np.nanmean(segment)
segment_std = np.nanstd(segment)
if segment_std == 0:
raise ValueError(f"segment_std is zero! segment_start: {enable_start}, segment_end: {enable_end}")
# 同下一个enable区间的体动一起进行标准化
if i <= len(enable_list) - 2:
enable_end = enable_list[i + 1][0] * resp_fs
raw_segment = resp_signal[enable_start:enable_end]
normalized_resp_signal[enable_start:enable_end] = (raw_segment - segment_mean) / segment_std
return normalized_resp_signal