DataPrepare/utils/HYS_FileReader.py

295 lines
12 KiB
Python

from pathlib import Path
from typing import Union
import utils
from .event_map import N2Chn
import numpy as np
import pandas as pd
from .operation_tools import event_mask_2_list
# 尝试导入 Polars
try:
import polars as pl
HAS_POLARS = True
except ImportError:
HAS_POLARS = False
def read_signal_txt(path: Union[str, Path], dtype, verbose=True, is_peak=False):
"""
Read a txt file and return the first column as a numpy array.
Args:
:param path:
:param verbose:
:param dtype:
Returns:
np.ndarray: The first column of the txt file as a numpy array.
"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
if HAS_POLARS:
df = pl.read_csv(path, has_header=False, infer_schema_length=0)
signal_data_raw = df[:, 0].to_numpy().astype(dtype)
else:
df = pd.read_csv(path, header=None, dtype=dtype)
signal_data_raw = df.iloc[:, 0].to_numpy()
signal_original_length = len(signal_data_raw)
signal_fs = int(path.stem.split("_")[-1])
if is_peak:
signal_second = None
signal_length = None
else:
signal_second = signal_original_length // signal_fs
# 根据采样率进行截断
signal_data_raw = signal_data_raw[:signal_second * signal_fs]
signal_length = len(signal_data_raw)
if verbose:
print(f"Signal file read from {path}")
print(f"signal_fs: {signal_fs}")
print(f"signal_original_length: {signal_original_length}")
print(f"signal_after_cut_off_length: {signal_length}")
print(f"signal_second: {signal_second}")
return signal_data_raw, signal_length, signal_fs, signal_second
def read_label_csv(path: Union[str, Path], verbose=True) -> pd.DataFrame:
"""
Read a CSV file and return it as a pandas DataFrame.
Args:
path (str | Path): Path to the CSV file.
verbose (bool):
Returns:
pd.DataFrame: The content of the CSV file as a pandas DataFrame.
:param path:
:param verbose:
"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
# 直接用pandas读取 包含中文 故指定编码
df = pd.read_csv(path, encoding="gbk")
if verbose:
print(f"Label file read from {path}, number of rows: {len(df)}")
# 统计打标情况
# isLabeled=1 表示已打标
# Event type 有值的为PSG导出的事件
# Event type 为nan的为手动打标的事件
# score=1 显著事件, score=2 为受干扰事件 score=3 为非显著应删除事件
# 确认后的事件在correct_EventsType
# 输出事件信息 按照总计事件、低通气、中枢性、阻塞性、混合型按行输出 格式为 总计/来自PSG/手动/删除/未标注
# Columns:
# Index Event type Stage Time Epoch Date Duration HR bef. HR extr. HR delta O2 bef. O2 min. O2 delta Body Position Validation Start End score remark correct_Start correct_End correct_EventsType isLabeled
# Event type:
# Hypopnea
# Central apnea
# Obstructive apnea
# Mixed apnea
num_total = np.sum((df["isLabeled"] == 1) & (df["score"] != 3))
num_psg_events = np.sum(df["Event type"].notna())
num_manual_events = np.sum(df["Event type"].isna())
num_deleted = np.sum(df["score"] == 3)
# 统计事件
num_unlabeled = np.sum(df["isLabeled"] == -1)
num_psg_hyp = np.sum(df["Event type"] == "Hypopnea")
num_psg_csa = np.sum(df["Event type"] == "Central apnea")
num_psg_osa = np.sum(df["Event type"] == "Obstructive apnea")
num_psg_msa = np.sum(df["Event type"] == "Mixed apnea")
num_hyp = np.sum((df["correct_EventsType"] == "Hypopnea") & (df["score"] != 3))
num_csa = np.sum((df["correct_EventsType"] == "Central apnea") & (df["score"] != 3))
num_osa = np.sum((df["correct_EventsType"] == "Obstructive apnea") & (df["score"] != 3))
num_msa = np.sum((df["correct_EventsType"] == "Mixed apnea") & (df["score"] != 3))
num_manual_hyp = np.sum((df["Event type"].isna()) & (df["correct_EventsType"] == "Hypopnea"))
num_manual_csa = np.sum((df["Event type"].isna()) & (df["correct_EventsType"] == "Central apnea"))
num_manual_osa = np.sum((df["Event type"].isna()) & (df["correct_EventsType"] == "Obstructive apnea"))
num_manual_msa = np.sum((df["Event type"].isna()) & (df["correct_EventsType"] == "Mixed apnea"))
num_deleted_hyp = np.sum((df["score"] == 3) & (df["correct_EventsType"] == "Hypopnea"))
num_deleted_csa = np.sum((df["score"] == 3) & (df["correct_EventsType"] == "Central apnea"))
num_deleted_osa = np.sum((df["score"] == 3) & (df["correct_EventsType"] == "Obstructive apnea"))
num_deleted_msa = np.sum((df["score"] == 3) & (df["correct_EventsType"] == "Mixed apnea"))
num_unlabeled_hyp = np.sum((df["isLabeled"] == -1) & (df["Event type"] == "Hypopnea"))
num_unlabeled_csa = np.sum((df["isLabeled"] == -1) & (df["Event type"] == "Central apnea"))
num_unlabeled_osa = np.sum((df["isLabeled"] == -1) & (df["Event type"] == "Obstructive apnea"))
num_unlabeled_msa = np.sum((df["isLabeled"] == -1) & (df["Event type"] == "Mixed apnea"))
num_hyp_1_score = np.sum((df["correct_EventsType"] == "Hypopnea") & (df["score"] == 1))
num_csa_1_score = np.sum((df["correct_EventsType"] == "Central apnea") & (df["score"] == 1))
num_osa_1_score = np.sum((df["correct_EventsType"] == "Obstructive apnea") & (df["score"] == 1))
num_msa_1_score = np.sum((df["correct_EventsType"] == "Mixed apnea") & (df["score"] == 1))
num_hyp_2_score = np.sum((df["correct_EventsType"] == "Hypopnea") & (df["score"] == 2))
num_csa_2_score = np.sum((df["correct_EventsType"] == "Central apnea") & (df["score"] == 2))
num_osa_2_score = np.sum((df["correct_EventsType"] == "Obstructive apnea") & (df["score"] == 2))
num_msa_2_score = np.sum((df["correct_EventsType"] == "Mixed apnea") & (df["score"] == 2))
num_hyp_3_score = np.sum((df["correct_EventsType"] == "Hypopnea") & (df["score"] == 3))
num_csa_3_score = np.sum((df["correct_EventsType"] == "Central apnea") & (df["score"] == 3))
num_osa_3_score = np.sum((df["correct_EventsType"] == "Obstructive apnea") & (df["score"] == 3))
num_msa_3_score = np.sum((df["correct_EventsType"] == "Mixed apnea") & (df["score"] == 3))
num_1_score = np.sum(df["score"] == 1)
num_2_score = np.sum(df["score"] == 2)
num_3_score = np.sum(df["score"] == 3)
if verbose:
print("Event Statistics:")
# 格式化输出 总计/来自PSG/手动/删除/未标注 指定宽度
print(f"Type {'Total':^8s} / {'From PSG':^8s} / {'Manual':^8s} / {'Deleted':^8s} / {'Unlabeled':^8s}")
print(
f"Hyp: {num_hyp:^8d} / {num_psg_hyp:^8d} / {num_manual_hyp:^8d} / {num_deleted_hyp:^8d} / {num_unlabeled_hyp:^8d}")
print(
f"CSA: {num_csa:^8d} / {num_psg_csa:^8d} / {num_manual_csa:^8d} / {num_deleted_csa:^8d} / {num_unlabeled_csa:^8d}")
print(
f"OSA: {num_osa:^8d} / {num_psg_osa:^8d} / {num_manual_osa:^8d} / {num_deleted_osa:^8d} / {num_unlabeled_osa:^8d}")
print(
f"MSA: {num_msa:^8d} / {num_psg_msa:^8d} / {num_manual_msa:^8d} / {num_deleted_msa:^8d} / {num_unlabeled_msa:^8d}")
print(
f"All: {num_total:^8d} / {num_psg_events:^8d} / {num_manual_events:^8d} / {num_deleted:^8d} / {num_unlabeled:^8d}")
print("Score Statistics (only for non-deleted events and manual created events):")
print(f"Type {'Total':^8s} / {'Score 1':^8s} / {'Score 2':^8s} / {'Score 3':^8s}")
print(f"Hyp: {num_hyp:^8d} / {num_hyp_1_score:^8d} / {num_hyp_2_score:^8d} / {num_hyp_3_score:^8d}")
print(f"CSA: {num_csa:^8d} / {num_csa_1_score:^8d} / {num_csa_2_score:^8d} / {num_csa_3_score:^8d}")
print(f"OSA: {num_osa:^8d} / {num_osa_1_score:^8d} / {num_osa_2_score:^8d} / {num_osa_3_score:^8d}")
print(f"MSA: {num_msa:^8d} / {num_msa_1_score:^8d} / {num_msa_2_score:^8d} / {num_msa_3_score:^8d}")
print(f"All: {num_total:^8d} / {num_1_score:^8d} / {num_2_score:^8d} / {num_3_score:^8d}")
df["Start"] = df["Start"].astype(int)
df["End"] = df["End"].astype(int)
return df
def read_disable_excel(path: Union[str, Path]) -> pd.DataFrame:
"""
Read an Excel file and return it as a pandas DataFrame.
Args:
path (str | Path): Path to the Excel file.
Returns:
pd.DataFrame: The content of the Excel file as a pandas DataFrame.
"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
# 直接用pandas读取
df = pd.read_excel(path)
df["id"] = df["id"].astype(int)
df["start"] = df["start"].astype(int)
df["end"] = df["end"].astype(int)
return df
def read_mask_execl(path: Union[str, Path]):
"""
Read an Excel file and return the mask as a numpy array.
Args:
path (str | Path): Path to the Excel file.
Returns:
np.ndarray: The mask as a numpy array.
"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
df = pd.read_csv(path)
event_mask = df.to_dict(orient="list")
for key in event_mask:
event_mask[key] = np.array(event_mask[key])
event_list = {"RespAmpChangeSegment": event_mask_2_list(1 - event_mask["Resp_AmpChange_Label"]),
"BCGAmpChangeSegment": event_mask_2_list(1 - event_mask["BCG_AmpChange_Label"]),
"EnableSegment": event_mask_2_list(1 - event_mask["Disable_Label"]),}
return event_mask, event_list
def read_psg_channel(path_str: Union[str, Path], channel_number: list[int]):
"""
读取PSG文件中特定通道的数据。
参数:
path_str (Union[str, Path]): 存放PSG文件的文件夹路径。
channel_name (str): 需要读取的通道名称。
返回:
np.ndarray: 指定通道的数据数组。
"""
path = Path(path_str)
if not path.exists():
raise FileNotFoundError(f"PSG Dir not found: {path}")
if not path.is_dir():
raise NotADirectoryError(f"PSG Dir not found: {path}")
channel_data = {}
# 遍历检查通道对应的文件是否存在
for ch_id in channel_number:
ch_name = N2Chn[ch_id]
ch_path = list(path.glob(f"{ch_name}*.txt"))
if not any(ch_path):
raise FileNotFoundError(f"PSG Channel file not found: {ch_path}")
if len(ch_path) > 1:
print(f"Warning!!! PSG Channel file more than one: {ch_path}")
if ch_id == 8:
# sleep stage 特例 读取为整数
ch_signal, ch_length, ch_fs, ch_second = read_signal_txt(ch_path[0], dtype=str, verbose=True)
# 转换为整数数组
for stage_str, stage_number in utils.Stage2N.items():
np.place(ch_signal, ch_signal == stage_str, stage_number)
ch_signal = ch_signal.astype(int)
elif ch_id == 1:
# Rpeak 特例 读取为整数
ch_signal, ch_length, ch_fs, ch_second = read_signal_txt(ch_path[0], dtype=int, verbose=True, is_peak=True)
else:
ch_signal, ch_length, ch_fs, ch_second = read_signal_txt(ch_path[0], dtype=float, verbose=True)
channel_data[ch_name] = {
"name": ch_name,
"path": ch_path[0],
"data": ch_signal,
"length": ch_length,
"fs": ch_fs,
"second": ch_second
}
return channel_data
def read_psg_label(path: Union[str, Path], verbose=True):
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
# 直接用pandas读取 包含中文 故指定编码
df = pd.read_csv(path, encoding="gbk")
if verbose:
print(f"Label file read from {path}, number of rows: {len(df)}")
# 丢掉Event type为空的行
df = df.dropna(subset=["Event type"], how='all').reset_index(drop=True)
return df