添加主程序接口
添加血氧信号与标签的显示 调整了信号顺序 添加日志模块 添加程序注释
This commit is contained in:
parent
85de1815b2
commit
d7725857a9
41
Main_Quality_Relabel.py
Normal file
41
Main_Quality_Relabel.py
Normal file
@ -0,0 +1,41 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: UTF-8 -*-
|
||||
"""
|
||||
@author:Marques
|
||||
@file:Main_Quality_Relabel.py
|
||||
@email:admin@marques22.com
|
||||
@email:2021022362@m.scnu.edu.cn
|
||||
@time:2022/03/28
|
||||
"""
|
||||
from utils.Quality_Relabel import Quality_Relabel
|
||||
|
||||
# start-----一般不用修改------
|
||||
# 绘图时的采样率
|
||||
frequency = 100
|
||||
# 心晓数据采样率
|
||||
bcg_frequency = 1000
|
||||
# end-----一般不用修改------
|
||||
|
||||
# 要遍历的事件
|
||||
# 可选一个或多个 "Hypopnea" "Central apnea" "Obstructive apnea" "Mixed apnea"
|
||||
focus_event_list = ["Obstructive apnea"]
|
||||
# 信号显示事件前多少秒
|
||||
front_add_second = 60
|
||||
# 信号显示事件后多少秒
|
||||
back_add_second = 60
|
||||
|
||||
# 样本编号
|
||||
sampNo = 670
|
||||
# 从第几个心晓事件数量开始
|
||||
start_bcg_index = 0
|
||||
# 用于心晓信号前面有一部分信号不可用,PSG事件第几个事件对应于心晓第一个事件
|
||||
shifting = 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
qualityRelabel = Quality_Relabel(sampNo=sampNo, frequency=frequency, bcg_frequency=bcg_frequency,
|
||||
focus_event_list=focus_event_list)
|
||||
|
||||
qualityRelabel.show_all_event(start_bcg_index=start_bcg_index,
|
||||
shifting=shifting,
|
||||
front_add_second=front_add_second,
|
||||
back_add_second=back_add_second)
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: cp936 -*-
|
||||
# 使用gbk编码才能显示
|
||||
# 使用gbk编码才能读标签
|
||||
"""
|
||||
@author:Marques
|
||||
@file:Prepare_Data.py
|
||||
@ -7,9 +7,9 @@
|
||||
@email:2021022362@m.scnu.edu.cn
|
||||
@time:2022/03/26
|
||||
"""
|
||||
from datetime import datetime
|
||||
from typing import Union, List
|
||||
|
||||
import time
|
||||
from typing import List
|
||||
import logging
|
||||
import pyedflib
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
@ -17,32 +17,53 @@ import pandas as pd
|
||||
from matplotlib import pyplot as plt, gridspec
|
||||
from Preprocessing import BCG_Operation
|
||||
from tqdm import tqdm
|
||||
from datetime import datetime
|
||||
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
||||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||||
|
||||
|
||||
# ['EEG F3-A2', 'EEG F4-A1', 'EEG C3-A2', 'EEG C4-A1', 'EEG O1-A2',
|
||||
# 'EEG O2-A1', 'EOG Right', 'EOG Left', 'EMG Chin', 'ECG I', 'RR',
|
||||
# 'ECG II', 'Effort Tho', 'Flow Patient', 'Flow Patient', 'Effort Abd',
|
||||
# 'SpO2', 'Pleth', 'Snore', 'Body', 'Pulse', 'Leg LEG1', 'Leg LEG2',
|
||||
# 'EEG A1-A2', 'Imp']
|
||||
|
||||
class Prepare_Data:
|
||||
|
||||
# 设置日志
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.NOTSET)
|
||||
realtime = time.strftime('%Y%m%d', time.localtime(time.time()))
|
||||
fh = logging.FileHandler(Path("../history") / (realtime + ".log"), mode='a')
|
||||
fh.setLevel(logging.NOTSET)
|
||||
fh.setFormatter(logging.Formatter("%(asctime)s: %(message)s"))
|
||||
logger.addHandler(fh)
|
||||
|
||||
ch = logging.StreamHandler()
|
||||
ch.setLevel(logging.NOTSET)
|
||||
ch.setFormatter(logging.Formatter("%(asctime)s: %(message)s"))
|
||||
logger.addHandler(ch)
|
||||
logging.getLogger('matplotlib.font_manager').disabled = True
|
||||
logging.info("------------------------------------")
|
||||
|
||||
|
||||
class Quality_Relabel:
|
||||
# 可选择的通道
|
||||
base_channel = ['EEG F3-A2', 'EEG F4-A1', 'EEG C3-A2', 'EEG C4-A1', 'EEG O1-A2', 'EEG O2-A1', 'EOG Right',
|
||||
'EOG Left', 'EMG Chin', 'ECG I', 'RR', 'ECG II', 'Effort Tho', 'Flow Patient', 'Flow Patient', 'HR',
|
||||
'Effort Abd', 'SpO2', 'Pleth', 'Snore', 'Body', 'Pulse', 'Leg LEG1', 'Leg LEG2', 'EEG A1-A2', 'Imp']
|
||||
|
||||
# 显示事件
|
||||
base_event = ["Hypopnea", "Central apnea", "Obstructive apnea", "Mixed apnea"]
|
||||
base_event = ["Hypopnea", "Central apnea", "Obstructive apnea", "Mixed apnea", "Desaturation"]
|
||||
|
||||
# 设定事件和其对应颜色
|
||||
# 蓝色 背景
|
||||
# 粉色 低通气
|
||||
# 橙色 中枢性
|
||||
# 红色 阻塞型 与 混合型
|
||||
color_cycle = ["blue", "pink", "orange", "red", "red"]
|
||||
# event_code color event
|
||||
# 0 蓝色 背景
|
||||
# 1 粉色 低通气
|
||||
# 2 橙色 中枢性
|
||||
# 3 红色 阻塞型
|
||||
# 4 红色 混合型
|
||||
# 5 绿色 血氧饱和度下降
|
||||
color_cycle = ["blue", "pink", "orange", "red", "red", "green"]
|
||||
assert len(color_cycle) == len(base_event) + 1, "基础事件数量与颜色数量不一致"
|
||||
|
||||
def __init__(self, sampNo: int, frequency: int = 100, bcg_frequency: int = 1000,
|
||||
@ -67,6 +88,7 @@ class Prepare_Data:
|
||||
# 用来显示颜色时按点匹配事件
|
||||
self.ecg_event_label = None
|
||||
self.bcg_event_label = None
|
||||
self.spo2_event_label = None
|
||||
|
||||
# 仅包含关注暂停事件的列表
|
||||
self.ecg_event_label_filtered_df = None
|
||||
@ -86,7 +108,7 @@ class Prepare_Data:
|
||||
def check_channel(self):
|
||||
for i in self.channel_list:
|
||||
if i not in self.base_channel:
|
||||
print(f"{i} 不存在于常见通道名中")
|
||||
logging.debug(f"{i} 不存在于常见通道名中")
|
||||
print(f"常见通道名:{self.channel_list}")
|
||||
|
||||
def read_data(self, frequency: int = 100, bcg_frequency: int = 1000):
|
||||
@ -94,29 +116,32 @@ class Prepare_Data:
|
||||
ecg_path = Path(f"../Data/ECG/A{str(self.sampNo).rjust(7, '0')}.edf")
|
||||
|
||||
if not bcg_path.exists():
|
||||
logging.error(f"{bcg_path} 不存在!")
|
||||
raise FileNotFoundError(f"{bcg_path} 不存在!")
|
||||
|
||||
if not ecg_path.exists():
|
||||
logging.error(f"{ecg_path} 不存在!")
|
||||
raise FileNotFoundError(f"{ecg_path} 不存在!")
|
||||
|
||||
with pyedflib.EdfReader(str(ecg_path.resolve())) as file:
|
||||
signal_num = file.signals_in_file
|
||||
print(f"{self.sampNo} EDF file signal number is {signal_num}")
|
||||
logging.debug(f"{self.sampNo} EDF file signal number is {signal_num}")
|
||||
|
||||
signal_label = file.getSignalLabels()
|
||||
print(f"{self.sampNo} EDF file signal label : {signal_label}")
|
||||
logging.debug(f"{self.sampNo} EDF file signal label : {signal_label}")
|
||||
|
||||
self.ecg_start_time = file.getStartdatetime()
|
||||
|
||||
# 根据PSG记录长度生成事件表
|
||||
self.ecg_event_label = np.zeros(file.getFileDuration() * self.frequency)
|
||||
|
||||
self.spo2_event_label = np.zeros(file.getFileDuration() * self.frequency)
|
||||
# 打印PSG信息
|
||||
file.file_info_long()
|
||||
|
||||
# sub_index 用于区分两个flow patient
|
||||
sub_index = 1
|
||||
|
||||
logging.info("读取PSG信号····")
|
||||
for i, index in enumerate(signal_label):
|
||||
# 仅加载选中的通道
|
||||
if index in self.channel_list:
|
||||
@ -124,7 +149,6 @@ class Prepare_Data:
|
||||
if index == 'Flow Patient':
|
||||
index = index + str(sub_index)
|
||||
sub_index += 1
|
||||
|
||||
signal = file.readSignal(i)
|
||||
sample_frequency = file.getSampleFrequency(i)
|
||||
# 读取采样率 进行重采样
|
||||
@ -133,8 +157,10 @@ class Prepare_Data:
|
||||
elif sample_frequency > frequency:
|
||||
signal = signal[::int(sample_frequency / frequency)]
|
||||
self.signal_select[index] = signal
|
||||
logging.info(f"完成读取PSG: {index}")
|
||||
|
||||
# 加载心晓信号
|
||||
logging.info("读取心晓信号····")
|
||||
signal = np.load(bcg_path)
|
||||
preprocessing = BCG_Operation(sample_rate=bcg_frequency)
|
||||
# 20Hz低通去噪
|
||||
@ -156,21 +182,24 @@ class Prepare_Data:
|
||||
ecg_label_path = Path(f"../Data/ECG_label/export{self.sampNo}.csv")
|
||||
|
||||
if not bcg_label_path.exists():
|
||||
logging.error(f"{bcg_label_path} 不存在!")
|
||||
raise FileNotFoundError(f"{bcg_label_path} 不存在!")
|
||||
|
||||
if not ecg_label_path.exists():
|
||||
logging.error(f"{ecg_label_path} 不存在!")
|
||||
raise FileNotFoundError(f"{ecg_label_path} 不存在!")
|
||||
|
||||
df = pd.read_csv(ecg_label_path, encoding='gbk')
|
||||
self.ecg_event_label_df = df
|
||||
|
||||
# 过滤不关注的事件
|
||||
df = df[df["Event type"].isin(self.focus_event_list)]
|
||||
df2 = df[df["Event type"].isin(self.focus_event_list)]
|
||||
# 根据epoch进行排列方便索引
|
||||
df = df.sort_values(by='Epoch')
|
||||
self.ecg_event_label_filtered_df = df
|
||||
df2 = df2.sort_values(by='Epoch')
|
||||
self.ecg_event_label_filtered_df = df2
|
||||
|
||||
for one_data in df.index:
|
||||
logging.info("遍历PSG事件···")
|
||||
for one_data in tqdm(df.index, ncols=80):
|
||||
one_data = df.loc[one_data]
|
||||
|
||||
# 通过开始事件推算事件起始点与结束点
|
||||
@ -190,6 +219,8 @@ class Prepare_Data:
|
||||
self.ecg_event_label[SP:EP] = 3
|
||||
elif one_data["Event type"] == "Mixed apnea":
|
||||
self.ecg_event_label[SP:EP] = 4
|
||||
elif one_data["Event type"] == "Desaturation":
|
||||
self.spo2_event_label[SP:EP] = 5
|
||||
|
||||
# 读取心晓事件
|
||||
df = pd.read_csv(bcg_label_path, encoding='gbk')
|
||||
@ -198,11 +229,11 @@ class Prepare_Data:
|
||||
self.bcg_event_label_df = df
|
||||
|
||||
# 过滤不关注事件
|
||||
df = df[df["Event type"].isin(self.focus_event_list)]
|
||||
df = df.sort_values(by='Epoch')
|
||||
self.bcg_event_label_filtered_df = df
|
||||
|
||||
for one_data in df.index:
|
||||
df2 = df[df["Event type"].isin(self.focus_event_list)]
|
||||
df2 = df2.sort_values(by='Epoch')
|
||||
self.bcg_event_label_filtered_df = df2
|
||||
logging.info("遍历心晓事件···")
|
||||
for one_data in tqdm(df.index):
|
||||
one_data = df.loc[one_data]
|
||||
SP = one_data["new_start"] * self.frequency
|
||||
EP = one_data["new_end"] * self.frequency
|
||||
@ -221,17 +252,19 @@ class Prepare_Data:
|
||||
# 心晓事件数量{len(self.bcg_event_label_filtered_df)}"
|
||||
|
||||
def show_one_event(self, bcg_index: int, ecg_index: int, front_add_second: int = 60,
|
||||
back_add_second: int = 60, main_SA_visual: int = 1):
|
||||
back_add_second: int = 60):
|
||||
"""
|
||||
:param bcg_index: 心晓事件在csv中行号
|
||||
:param ecg_index: PSG事件在csv中序号
|
||||
:param front_add_second: 向前延伸时间
|
||||
:param back_add_second: 向后延伸时间
|
||||
:param main_SA_visual: 1:仅当前事件上色 0:不上色 2:所有事件上色
|
||||
:return:
|
||||
"""
|
||||
one_bcg_data = self.bcg_event_label_df.loc[bcg_index]
|
||||
one_ecg_data = self.ecg_event_label_df.loc[ecg_index]
|
||||
# 获取事件实际在csv文件中的序号
|
||||
bcg_real_index = self.bcg_event_label_filtered_df.index[bcg_index],
|
||||
ecg_real_index = self.ecg_event_label_filtered_df.index[ecg_index],
|
||||
one_bcg_data = self.bcg_event_label_df.loc[bcg_real_index]
|
||||
one_ecg_data = self.ecg_event_label_df.loc[ecg_real_index]
|
||||
|
||||
# 获取ECG事件开始与结束时间
|
||||
event_start_time = datetime.strptime(one_ecg_data["Date"] + " " + one_ecg_data["Time"], '%Y/%m/%d %H:%M:%S')
|
||||
@ -243,7 +276,16 @@ class Prepare_Data:
|
||||
bcg_SP = one_bcg_data["new_start"]
|
||||
bcg_EP = one_bcg_data["new_end"]
|
||||
bcg_duration = int(float(str(one_bcg_data["Duration"]).split("(")[0]))
|
||||
print(ecg_SP, ecg_EP, bcg_SP, bcg_EP)
|
||||
|
||||
logging.info(f"sampNo:{self.sampNo} "
|
||||
f"bcg[index:{bcg_index} epoch:{one_bcg_data['Epoch']} event:{one_bcg_data['Event type']}] "
|
||||
f"ecg:[index:{ecg_index} epoch:{one_ecg_data['Epoch']} event:{one_ecg_data['Event type']}]")
|
||||
|
||||
if one_bcg_data['Event type'] != one_ecg_data['Event type']:
|
||||
logging.error(f"sampNo:{self.sampNo} PSG事件与心晓时间不一致,请排查"
|
||||
f"bcg[index:{bcg_index} epoch:{one_bcg_data['Epoch']} event:{one_bcg_data['Event type']}] "
|
||||
f"ecg:[index:{ecg_index} epoch:{one_ecg_data['Epoch']} event:{one_ecg_data['Event type']}]")
|
||||
raise ValueError()
|
||||
|
||||
# 进行向两边延展
|
||||
ecg_SP = ecg_SP - front_add_second
|
||||
@ -253,158 +295,99 @@ class Prepare_Data:
|
||||
|
||||
# 绘图
|
||||
plt.figure(figsize=(12, 6), dpi=150)
|
||||
gs = gridspec.GridSpec(7, 1, height_ratios=[1, 1, 1, 3, 1, 1, 1])
|
||||
# 各个子图之间的比例
|
||||
gs = gridspec.GridSpec(7, 1, height_ratios=[1, 1, 1, 1, 1, 3, 1])
|
||||
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
||||
plt.margins(0, 0)
|
||||
plt.tight_layout()
|
||||
|
||||
# 绘制 Flow1
|
||||
plt.subplot(gs[0])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency),
|
||||
self.signal_select["Effort Tho"][ecg_SP * self.frequency:ecg_EP * self.frequency], label="Effort Tho")
|
||||
# 进行事件颜色标注
|
||||
for j in range(1, 5):
|
||||
mask = self.ecg_event_label[ecg_SP * self.frequency:ecg_EP * self.frequency] == j
|
||||
y = (self.signal_select["Effort Tho"][ecg_SP * self.frequency:ecg_EP * self.frequency] * mask).astype(
|
||||
'float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
# 显示图注
|
||||
plt.legend(loc=1)
|
||||
|
||||
# 隐藏部分边框
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
# 去掉x轴
|
||||
plt.xticks([])
|
||||
self.plt_channel(plt_=plt, SP=ecg_SP, EP=ecg_EP, channel="Flow Patient1")
|
||||
|
||||
# 绘制 Flow2
|
||||
plt.subplot(gs[1])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency),
|
||||
self.signal_select["Effort Abd"][ecg_SP * self.frequency:ecg_EP * self.frequency], label="Effort Abd")
|
||||
for j in range(1, 5):
|
||||
mask = self.ecg_event_label[ecg_SP * self.frequency:ecg_EP * self.frequency] == j
|
||||
y = (self.signal_select["Effort Abd"][ecg_SP * self.frequency:ecg_EP * self.frequency] * mask).astype(
|
||||
'float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
|
||||
plt.title(f"sampNo:{self.sampNo} Epoch:{one_ecg_data['Epoch']} Duration:{one_ecg_data['Duration']}")
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([])
|
||||
self.plt_channel(plt_=plt, SP=ecg_SP, EP=ecg_EP, channel="Flow Patient2",
|
||||
title=f"PSG sampNo:{self.sampNo} Epoch:{one_ecg_data['Epoch']} Duration:{one_ecg_data['Duration']}")
|
||||
|
||||
plt.subplot(gs[2])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(bcg_SP, bcg_EP, (bcg_EP - bcg_SP) * self.frequency),
|
||||
self.signal_select["xin_xiao_respire"][bcg_SP * self.frequency:bcg_EP * self.frequency], label="心晓 呼吸")
|
||||
|
||||
min_bcg = self.signal_select["xin_xiao_respire"][bcg_SP * self.frequency:bcg_EP * self.frequency].min()
|
||||
len_bcg = bcg_EP * self.frequency - bcg_SP * self.frequency
|
||||
for j in range(1, 5):
|
||||
mask = self.bcg_event_label[bcg_SP * self.frequency:bcg_EP * self.frequency] == j
|
||||
y = (min_bcg.repeat(len_bcg) * mask).astype('float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(bcg_SP, bcg_EP, (bcg_EP - bcg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
# plt.title(f"sampNo:{self.sampNo} Epoch:{one_bcg_data['Epoch']} Duration:{one_bcg_data['Duration']}")
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([])
|
||||
self.plt_channel(plt_=plt, SP=ecg_SP, EP=ecg_EP, channel="Effort Tho")
|
||||
|
||||
plt.subplot(gs[3])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(bcg_SP, bcg_EP, (bcg_EP - bcg_SP) * self.frequency),
|
||||
self.signal_select["xin_xiao"][bcg_SP * self.frequency:bcg_EP * self.frequency], label="心晓")
|
||||
|
||||
min_bcg = self.signal_select["xin_xiao"][bcg_SP * self.frequency:bcg_EP * self.frequency].min()
|
||||
len_bcg = bcg_EP * self.frequency - bcg_SP * self.frequency
|
||||
for j in range(1, 5):
|
||||
mask = self.bcg_event_label[bcg_SP * self.frequency:bcg_EP * self.frequency] == j
|
||||
y = (min_bcg.repeat(len_bcg) * mask).astype('float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(bcg_SP, bcg_EP, (bcg_EP - bcg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
plt.title(f"sampNo:{self.sampNo} Epoch:{one_bcg_data['Epoch']} Duration:{one_bcg_data['Duration']}")
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([]) # 去掉x轴
|
||||
self.plt_channel(plt_=plt, SP=ecg_SP, EP=ecg_EP, channel="Effort Abd")
|
||||
|
||||
plt.subplot(gs[4])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency),
|
||||
self.signal_select["Flow Patient1"][ecg_SP * self.frequency:ecg_EP * self.frequency],
|
||||
label="Flow Patient1")
|
||||
|
||||
for j in range(1, 5):
|
||||
mask = self.ecg_event_label[ecg_SP * self.frequency:ecg_EP * self.frequency] == j
|
||||
y = (self.signal_select["Flow Patient1"][ecg_SP * self.frequency:ecg_EP * self.frequency] * mask).astype(
|
||||
'float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([]) # 去掉x轴
|
||||
self.plt_channel(plt_=plt, SP=ecg_SP, EP=ecg_EP, channel="SpO2", event_code=[5])
|
||||
|
||||
plt.subplot(gs[5])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency),
|
||||
self.signal_select["Flow Patient2"][ecg_SP * self.frequency:ecg_EP * self.frequency],
|
||||
label="Flow Patient2")
|
||||
|
||||
for j in range(1, 5):
|
||||
mask = self.ecg_event_label[ecg_SP * self.frequency:ecg_EP * self.frequency] == j
|
||||
y = (self.signal_select["Flow Patient2"][ecg_SP * self.frequency:ecg_EP * self.frequency] * mask).astype(
|
||||
'float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([])
|
||||
self.plt_channel(plt_=plt, SP=bcg_SP, EP=bcg_EP, channel="xin_xiao", event_show_under=True)
|
||||
|
||||
plt.subplot(gs[6])
|
||||
# ['Effort Tho', 'Effort Abd', 'SpO2', 'Flow Patient', 'Flow Patient']
|
||||
plt.plot(np.linspace(ecg_SP, ecg_EP, (ecg_EP - ecg_SP) * self.frequency),
|
||||
self.signal_select["SpO2"][ecg_SP * self.frequency:ecg_EP * self.frequency], label="SpO2")
|
||||
plt.legend(loc=1)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["bottom"].set_visible(False)
|
||||
plt.xticks([])
|
||||
self.plt_channel(plt_=plt, SP=bcg_SP, EP=bcg_EP, channel="xin_xiao_respire", event_show_under=True,
|
||||
ax_bottom=True,
|
||||
title=f"心晓 sampNo:{self.sampNo} Epoch:{one_bcg_data['Epoch']} Duration:{one_bcg_data['Duration']}",
|
||||
)
|
||||
|
||||
plt.show()
|
||||
|
||||
def show_all_event(self, start_index: int = 0, shifting: int = 0, front_add_second: int = 60,
|
||||
back_add_second: int = 60, main_SA_visual: int = 1):
|
||||
def plt_channel(self, plt_, SP, EP, channel, event_code=[1, 2, 3, 4], event_show_under=False,
|
||||
ax_top=False, ax_bottom=False, ax_left=True, ax_right=False, title=None):
|
||||
"""
|
||||
|
||||
for index in range(start_index, len(self.bcg_event_label_filtered_df)):
|
||||
self.show_one_event(self.bcg_event_label_filtered_df.index[index],
|
||||
self.ecg_event_label_filtered_df.index[index + shifting],
|
||||
:param plt_:
|
||||
:param SP: 显示开始秒数
|
||||
:param EP: 显示结束秒数
|
||||
:param channel: 通道名称
|
||||
:param event_code: 要上色的事件编号
|
||||
:param event_show_under: 事件颜色显示在信号下面
|
||||
:param ax_top: 显示上框线
|
||||
:param ax_bottom: 显示下框线
|
||||
:param ax_left: 显示左框线
|
||||
:param ax_right: 显示右框线
|
||||
:param title: 显示标题
|
||||
:return:
|
||||
"""
|
||||
plt_.plot(np.linspace(SP, EP, (EP - SP) * self.frequency),
|
||||
self.signal_select[channel][SP * self.frequency:EP * self.frequency], label=channel)
|
||||
|
||||
for j in event_code:
|
||||
if channel == "SpO2":
|
||||
mask = self.spo2_event_label[SP * self.frequency:EP * self.frequency] == j
|
||||
else:
|
||||
mask = self.ecg_event_label[SP * self.frequency:EP * self.frequency] == j
|
||||
if event_show_under:
|
||||
min_point = self.signal_select[channel][SP * self.frequency:EP * self.frequency].min()
|
||||
len_segment = EP * self.frequency - SP * self.frequency
|
||||
y = (min_point.repeat(len_segment) * mask).astype('float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
else:
|
||||
y = (self.signal_select[channel][SP * self.frequency:EP * self.frequency] * mask).astype('float')
|
||||
np.place(y, y == 0, np.nan)
|
||||
plt_.plot(np.linspace(SP, EP, (EP - SP) * self.frequency), y, color=self.color_cycle[j])
|
||||
plt_.legend(loc=1)
|
||||
|
||||
if title is not None:
|
||||
plt_.title(title)
|
||||
ax = plt.gca()
|
||||
ax.spines["top"].set_visible(ax_top)
|
||||
ax.spines["right"].set_visible(ax_right)
|
||||
ax.spines["bottom"].set_visible(ax_bottom)
|
||||
ax.spines["left"].set_visible(ax_left)
|
||||
# xticks = [[]] if xticks else [range(SP, EP, 5), [str(i) for i in range(0, (EP - SP), 5)]]
|
||||
# print(xticks)
|
||||
# plt_.xticks(*xticks) # 去掉x轴
|
||||
|
||||
def show_all_event(self, start_bcg_index: int = 0, shifting: int = 0, front_add_second: int = 60,
|
||||
back_add_second: int = 60):
|
||||
|
||||
for index in range(start_bcg_index, len(self.bcg_event_label_filtered_df)):
|
||||
self.show_one_event(index,
|
||||
index + shifting,
|
||||
front_add_second=front_add_second,
|
||||
back_add_second=back_add_second,
|
||||
main_SA_visual=main_SA_visual
|
||||
back_add_second=back_add_second
|
||||
)
|
||||
|
||||
def get_fft(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
prepareData = Prepare_Data(670)
|
||||
prepareData = Quality_Relabel(670)
|
||||
prepareData.show_all_event()
|
Loading…
Reference in New Issue
Block a user