给捷龙康康

This commit is contained in:
marques 2023-03-06 15:57:09 +08:00
parent c0abde4ff9
commit 13cc898ec2
2 changed files with 219 additions and 0 deletions

161
load_dataset.py Normal file
View File

@ -0,0 +1,161 @@
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:Marques
@file:load_dataset.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2021/12/03
"""
import sys
from pathlib import Path
import pandas as pd
import numpy as np
import torch
import yaml
from torch.utils.data import Dataset
from tqdm import tqdm
"""
1. 读取方法
# 无论是否提前切分均提前转成npy格式
# 1.1 提前预处理切分好后生成npy直接载入切分好的片段 内存占用多 读取简单
使用此方法 1.2 提前预处理载入整夜数据切分好后生成csv或xls根据片段读取 内存占用少 读取较为复杂
"""
datasets = {}
# 减少重复读取
def read_dataset(config, augment=None):
data_path = Path(config["Path"]["dataset"])
try:
file_list = []
if data_path.is_dir():
dataset_list = list(data_path.rglob("*.npy_low_zscore.npy"))
dataset_list.sort()
file_list += dataset_list
elif data_path.is_file():
raise Exception(f'dataset path should be a dir')
else:
raise Exception(f'{data_path} does not exist')
except Exception as e:
raise Exception(f'Error loading data from {data_path}: {e} \n')
print("loading dataset")
for i in tqdm(file_list):
select_dataset = np.load(i, allow_pickle=True)[0]
# select_dataset = preprocessing.Butterworth(select_dataset, "lowpass", low_cut=20, order=3)
if augment is not None:
select_dataset = augment(select_dataset, config)
datasets[i.name.split("samp")[0]] = select_dataset
# 用第二种方法读取
class ApneaDataset(Dataset):
def __init__(self, config, dataset_type, select_sampno, segment_augment=None):
self.data_path = Path(config["Path"]["dataset"])
self.label_path = Path(config["Path"]["label"])
self.segment_augment = segment_augment
self.labels_info = None
self.labels = None
self.dataset_type = dataset_type
self.select_sampNo = select_sampno
self.disable_hpy = config["disable_hpy"]
self.apply_samplerate = config["apply_samplerate"]
# self._getAllData()
self._getAllLabels()
def __getitem__(self, index):
# PN patience number
# SP/EP start point, end point
# temp_label.append([sampNo, label[-1], i, hpy_num, csa_num, osa_num, mean_low, flow_low])
PN, segmentNo, label_type, new_label, SP, EP = self.labels_info[index]
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels_info[index]
if isinstance(datasets, dict):
segment = self.segment_augment(datasets[str(PN)], SP * self.apply_samplerate, EP * self.apply_samplerate)
return (*segment, self.labels[index], PN, segmentNo, label_type, new_label, SP, EP)
else:
raise Exception(f'dataset read failure!')
def count_SA(self):
# assert isinstance(self.disable_hpy, int)
return sum(self.labels)
def __len__(self):
return len(self.labels_info)
def _getAllLabels(self):
label_path = Path(self.label_path)
if not label_path.exists():
raise Exception(f'{self.label_path} does not exist')
try:
file_list = []
if label_path.is_dir():
if self.dataset_type == "train":
label_list = list(label_path.rglob("*_train_label.csv"))
elif self.dataset_type == "valid":
label_list = list(label_path.rglob("*_valid_label.csv"))
elif self.dataset_type == "test":
label_list = list(label_path.glob("*_sa_test_label.csv"))
# label_list = list(label_path.rglob("*_test_label.npy"))
elif self.dataset_type == "all_test":
label_list = list(label_path.rglob("*_sa_all_label.csv"))
else:
raise ValueError("self.dataset type error")
# label_list = list(label_path.rglob("*_label.npy"))
label_list.sort()
file_list += label_list
elif label_path.is_file():
raise Exception(f'dataset path should be a dir')
else:
raise Exception(f'{self.label_path} does not exist')
except Exception as e:
raise Exception(f'Error loading data from {self.label_path}: {e} \n')
print("loading labels")
for i in tqdm(file_list):
if int(i.name.split("_")[0]) not in self.select_sampNo:
continue
if self.labels_info is None:
self.labels_info = pd.read_csv(i).to_numpy(dtype=int)
else:
labels = pd.read_csv(i).to_numpy(dtype=int)
if len(labels) > 0:
self.labels_info = np.concatenate((self.labels_info, labels))
self.labels = (self.labels_info[:, 3] > self.disable_hpy) * 1
self.labels = torch.from_numpy(self.labels)
gpu = torch.cuda.is_available()
self.labels = self.labels.cuda() if gpu else self.labels
# self.labels_info = self.labels_info[:10000]
print(f"{self.dataset_type} length is {len(self.labels_info)}")
class TestApneaDataset2(ApneaDataset):
def __init__(self, config, dataset_type, select_sampno, segment_augment=None):
super(TestApneaDataset2, self).__init__(
config,
dataset_type=dataset_type,
select_sampno=select_sampno,
segment_augment=segment_augment,
)
def __getitem__(self, index):
PN, segmentNo, label_type, new_label, SP, EP = self.labels_info[index]
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels_info[index]
if isinstance(datasets, dict):
dataset = datasets[str(PN)]
segment = self.segment_augment(dataset, SP * self.apply_samplerate, EP * self.apply_samplerate)
return (*segment, self.labels[index], PN, segmentNo, label_type, new_label, SP, EP)
else:
raise Exception(f'dataset read failure!')
if __name__ == '__main__':
pass

58
my_augment.py Normal file
View File

@ -0,0 +1,58 @@
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:Marques
@file:my_augment.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/07/26
"""
import torch.cuda
import yaml
from utils.Preprocessing import BCG_Operation
import numpy as np
from scipy.signal import stft
from torch import from_numpy
with open("./settings.yaml") as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
apply_samplerate = hyp["apply_samplerate"]
dataset_samplerate = hyp["dataset_samplerate"]
preprocessing = BCG_Operation()
preprocessing.sample_rate = dataset_samplerate
def my_augment(dataset, config):
# dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6)
# dataset = (dataset - dataset.mean()) / dataset.std()
# dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.7, order=6)
# dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6)
print(f"dataset sample_rate is {config['dataset_samplerate']} down_ratio is {config['dataset_samplerate'] // config['apply_samplerate']}")
dataset = dataset[::config['dataset_samplerate'] // config['apply_samplerate']]
gpu = torch.cuda.is_available()
dataset = {"raw": from_numpy(dataset).float().cuda() if gpu else from_numpy(dataset).float(),
# "low": dataset_low,
# "high": dataset_high
}
return dataset
def get_stft(x, fs, n):
print(len(x))
f, t, amp = stft(x, fs, nperseg=n)
z = np.abs(amp.copy())
return f, t, z
def my_segment_augment(dataset, SP, EP):
# dataset_segment1 = dataset["low"][int(SP) * 100:int(EP) * 100].copy()
# dataset_segment2 = dataset["high"][int(SP) * 100:int(EP) * 100].copy()
# dataset_segment = np.concatenate(([dataset_segment1], [dataset_segment2]), axis=0)
dataset_segment = dataset["raw"][int(SP):int(EP)].unsqueeze(dim=0)
return [dataset_segment]
if __name__ == '__main__':
pass