sleep_apnea_hybrid/exam/023/load_dataset.py

179 lines
6.5 KiB
Python
Raw Normal View History

2022-10-14 22:33:34 +08:00
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:Marques
@file:load_dataset.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2021/12/03
"""
import sys
from pathlib import Path
import pandas as pd
import numpy as np
import torch.utils.data
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.Preprocessing import BCG_Operation
preprocessing = BCG_Operation()
preprocessing.sample_rate = 100
"""
1. 读取方法
# 无论是否提前切分均提前转成npy格式
# 1.1 提前预处理切分好后生成npy直接载入切分好的片段 内存占用多 读取简单
使用此方法 1.2 提前预处理载入整夜数据切分好后生成csv或xls根据片段读取 内存占用少 读取较为复杂
"""
datasets = {}
# 减少重复读取
def read_dataset(data_path, augment=None):
data_path = Path(data_path)
try:
f = []
if data_path.is_dir():
dataset_list = list(data_path.rglob("*.npy"))
dataset_list.sort()
f += dataset_list
elif data_path.is_file():
raise Exception(f'dataset path should be a dir')
else:
raise Exception(f'{data_path} does not exist')
except Exception as e:
raise Exception(f'Error loading data from {data_path}: {e} \n')
print("loading dataset")
for i in tqdm(f):
select_dataset = np.load(i)
select_dataset = preprocessing.Butterworth(select_dataset, "lowpass", low_cut=20, order=3)
if augment is not None:
select_dataset = augment(select_dataset)
datasets[i.name.split("samp")[0]] = select_dataset
# 用第二种方法读取
class ApneaDataset(Dataset):
def __init__(self, data_path, label_path, select_sampno, dataset_type, segment_augment=None):
self.data_path = data_path
self.label_path = label_path
self.segment_augment = segment_augment
self.labels = None
self.dataset_type = dataset_type
self.select_sampNo = select_sampno
# self._getAllData()
self._getAllLabels()
def __getitem__(self, index):
# PN patience number
# SP/EP start point, end point
# temp_label.append([sampNo, label[-1], i, hpy_num, csa_num, osa_num, mean_low, flow_low])
PN, segmentNo, label_type, new_label, SP, EP = self.labels[index]
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels[index]
if isinstance(datasets, dict):
dataset = datasets[str(PN)]
segment = self.segment_augment(dataset, SP, EP)
return (*segment, int(float(label_type) > 1))
else:
raise Exception(f'dataset read failure!')
def count_SA(self):
return sum(self.labels[:, 3] > 1)
def __len__(self):
return len(self.labels)
def _getAllLabels(self):
label_path = Path(self.label_path)
if not label_path.exists():
raise Exception(f'{self.label_path} does not exist')
try:
f = []
if label_path.is_dir():
if self.dataset_type == "train":
label_list = list(label_path.rglob("*_train_label.csv"))
elif self.dataset_type == "valid":
label_list = list(label_path.rglob("*_valid_label.csv"))
elif self.dataset_type == "test":
label_list = list(label_path.glob("*_sa_test_label.csv"))
# label_list = list(label_path.rglob("*_test_label.npy"))
elif self.dataset_type == "all_test":
label_list = list(label_path.rglob("*_sa_all_label.csv"))
else:
raise ValueError("self.dataset type error")
# label_list = list(label_path.rglob("*_label.npy"))
label_list.sort()
f += label_list
elif label_path.is_file():
raise Exception(f'dataset path should be a dir')
else:
raise Exception(f'{self.label_path} does not exist')
except Exception as e:
raise Exception(f'Error loading data from {self.label_path}: {e} \n')
print("loading labels")
for i in tqdm(f):
if int(i.name.split("_")[0]) not in self.select_sampNo:
continue
if self.labels is None:
self.labels = pd.read_csv(i).to_numpy(dtype=int)
else:
labels = pd.read_csv(i).to_numpy(dtype=int)
if len(labels) > 0:
self.labels = np.concatenate((self.labels, labels))
# self.labels = self.labels[:10000]
print(f"{self.dataset_type} length is {len(self.labels)}")
class TestApneaDataset(ApneaDataset):
def __init__(self, data_path, label_path, dataset_type, select_sampno, segment_augment=None):
super(TestApneaDataset, self).__init__(
data_path=data_path,
label_path=label_path,
dataset_type=dataset_type,
select_sampno=select_sampno,
segment_augment=segment_augment
)
def __getitem__(self, index):
PN, segmentNo, label_type, SP, EP = self.labels[index]
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels[index]
if isinstance(datasets, dict):
segment = datasets[str(PN)][int(SP) * 100:int(EP) * 100].copy()
if self.segment_augment is not None:
segment = self.segment_augment(segment)
return segment, int(float(label_type) > 1), PN, segmentNo, SP, EP
else:
raise Exception(f'dataset read failure!')
class TestApneaDataset2(ApneaDataset):
def __init__(self, data_path, label_path, select_sampno, dataset_type, segment_augment=None):
super(TestApneaDataset2, self).__init__(
data_path=data_path,
label_path=label_path,
dataset_type=dataset_type,
segment_augment=segment_augment,
select_sampno=select_sampno
)
def __getitem__(self, index):
PN, segmentNo, label_type, new_label, SP, EP = self.labels[index]
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels[index]
if isinstance(datasets, dict):
dataset = datasets[str(PN)]
segment = self.segment_augment(dataset, SP, EP)
return (*segment, int(float(label_type) > 1), PN, segmentNo, label_type, new_label, SP, EP)
else:
raise Exception(f'dataset read failure!')
if __name__ == '__main__':
pass