81 lines
2.2 KiB
Python
81 lines
2.2 KiB
Python
|
#!/usr/bin/python
|
|||
|
# -*- coding: UTF-8 -*-
|
|||
|
"""
|
|||
|
@author:Marques
|
|||
|
@file:my_augment.py
|
|||
|
@email:admin@marques22.com
|
|||
|
@email:2021022362@m.scnu.edu.cn
|
|||
|
@time:2022/07/26
|
|||
|
"""
|
|||
|
from utils.Preprocessing import BCG_Operation
|
|||
|
import numpy as np
|
|||
|
from scipy.signal import stft
|
|||
|
|
|||
|
preprocessing = BCG_Operation()
|
|||
|
preprocessing.sample_rate = 100
|
|||
|
|
|||
|
|
|||
|
def my_augment(dataset):
|
|||
|
dataset -= dataset.mean()
|
|||
|
dataset = preprocessing.Iirnotch(dataset)
|
|||
|
dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6)
|
|||
|
dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.5, order=4)
|
|||
|
dataset_low = (dataset_low - dataset_low.mean()) / dataset_low.std()
|
|||
|
# dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6)
|
|||
|
|
|||
|
dataset = {"low": dataset_low}
|
|||
|
# "high": dataset_high}
|
|||
|
return dataset
|
|||
|
|
|||
|
|
|||
|
def get_stft(x, fs, n):
|
|||
|
print(len(x))
|
|||
|
f, t, amp = stft(x, fs, nperseg=n)
|
|||
|
z = np.abs(amp.copy())
|
|||
|
return f, t, z
|
|||
|
|
|||
|
|
|||
|
def my_segment_augment(dataset, SP, EP):
|
|||
|
dataset_low = dataset["low"][int(SP) * 100:int(EP) * 100].copy()
|
|||
|
# dataset_high = dataset["high"][int(SP) * 100:int(EP) * 100].copy()
|
|||
|
|
|||
|
dataset_low = dataset_low[::10]
|
|||
|
|
|||
|
# 获取整段的特征 (3,1)
|
|||
|
# 按照十秒窗获取 (3,3)
|
|||
|
# 按照十秒窗步进两秒获取 (3,21)
|
|||
|
|
|||
|
sub_windows_size = 30
|
|||
|
stride = 1
|
|||
|
|
|||
|
manual_feature = [[], [], []]
|
|||
|
|
|||
|
SP = 0
|
|||
|
EP = sub_windows_size
|
|||
|
while EP <= sub_windows_size:
|
|||
|
# mean
|
|||
|
manual_feature[0].append(abs(dataset_low[SP:EP]).mean())
|
|||
|
# var
|
|||
|
manual_feature[1].append(abs(dataset_low[SP:EP]).var())
|
|||
|
# RMS
|
|||
|
manual_feature[2].append(np.sqrt((dataset_low[SP:EP] ** 2).mean()))
|
|||
|
|
|||
|
SP += stride
|
|||
|
EP += stride
|
|||
|
|
|||
|
dataset_low = dataset_low.reshape(-1, 1)
|
|||
|
manual_feature = np.array(manual_feature)
|
|||
|
manual_feature = manual_feature.reshape(1, -1)
|
|||
|
|
|||
|
# _, _, dataset_high = stft(dataset_high, 100, nperseg=50)
|
|||
|
# dataset_high = dataset_high.astype(np.float).T
|
|||
|
# dataset_high = dataset_high.reshape(dataset_high.shape[0], dataset_high.shape[1])
|
|||
|
|
|||
|
# return dataset_low, dataset_high
|
|||
|
|
|||
|
return dataset_low, manual_feature
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
pass
|