sleep_apnea_hybrid/exam/043/my_augment.py

81 lines
2.2 KiB
Python
Raw Normal View History

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:Marques
@file:my_augment.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/07/26
"""
from utils.Preprocessing import BCG_Operation
import numpy as np
from scipy.signal import stft
preprocessing = BCG_Operation()
preprocessing.sample_rate = 100
def my_augment(dataset):
dataset -= dataset.mean()
dataset = preprocessing.Iirnotch(dataset)
dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6)
dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.5, order=4)
dataset_low = (dataset_low - dataset_low.mean()) / dataset_low.std()
# dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6)
dataset = {"low": dataset_low}
# "high": dataset_high}
return dataset
def get_stft(x, fs, n):
print(len(x))
f, t, amp = stft(x, fs, nperseg=n)
z = np.abs(amp.copy())
return f, t, z
def my_segment_augment(dataset, SP, EP):
dataset_low = dataset["low"][int(SP) * 100:int(EP) * 100].copy()
# dataset_high = dataset["high"][int(SP) * 100:int(EP) * 100].copy()
dataset_low = dataset_low[::10]
# 获取整段的特征 31
# 按照十秒窗获取 33
# 按照十秒窗步进两秒获取 321
sub_windows_size = 30
stride = 1
manual_feature = [[], [], []]
SP = 0
EP = sub_windows_size
while EP <= sub_windows_size:
# mean
manual_feature[0].append(abs(dataset_low[SP:EP]).mean())
# var
manual_feature[1].append(abs(dataset_low[SP:EP]).var())
# RMS
manual_feature[2].append(np.sqrt((dataset_low[SP:EP] ** 2).mean()))
SP += stride
EP += stride
dataset_low = dataset_low.reshape(-1, 1)
manual_feature = np.array(manual_feature)
manual_feature = manual_feature.reshape(1, -1)
# _, _, dataset_high = stft(dataset_high, 100, nperseg=50)
# dataset_high = dataset_high.astype(np.float).T
# dataset_high = dataset_high.reshape(dataset_high.shape[0], dataset_high.shape[1])
# return dataset_low, dataset_high
return dataset_low, manual_feature
if __name__ == '__main__':
pass