#!/usr/bin/python # -*- coding: UTF-8 -*- """ @author:Marques @file:my_augment.py @email:admin@marques22.com @email:2021022362@m.scnu.edu.cn @time:2022/07/26 """ from utils.Preprocessing import BCG_Operation import numpy as np from scipy.signal import stft preprocessing = BCG_Operation() preprocessing.sample_rate = 100 def my_augment(dataset): if 1000 < dataset.mean() < 2000: dataset[dataset == 0] = 1825 dataset[dataset < 1200] = 1225 dataset[dataset > 2400] = 2425 elif 2000 < dataset.mean() < 3000: dataset[dataset == 0] = 2375 dataset[dataset < 1775] = 1775 dataset[dataset > 2975] = 2975 dataset -= 550 else: print("something wrong") # select_dataset = preprocessing.Butterworth(select_dataset, "lowpass", low_cut=0.7, order=3) dataset -= dataset.mean() dataset = dataset.dot(1 / 600) dataset = preprocessing.Iirnotch(dataset) dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6) dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.7, order=6) dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6) dataset = {"low": dataset_low, "high": dataset_high} return dataset def get_stft(x, fs, n): print(len(x)) f, t, amp = stft(x, fs, nperseg=n) z = np.abs(amp.copy()) return f, t, z def my_segment_augment(dataset, SP, EP): dataset_low = dataset["low"][int(SP) * 100:int(EP) * 100].copy() dataset_high = dataset["high"][int(SP) * 100:int(EP) * 100].copy() dataset_low = dataset_low[::10] dataset_low = dataset_low.reshape(dataset_low.shape[0], 1) _, _, dataset_high = stft(dataset_high, 100, nperseg=50) dataset_high = dataset_high.astype(np.float).T dataset_high = dataset_high.reshape(1, dataset_high.shape[0], dataset_high.shape[1]) return dataset_low, dataset_high if __name__ == '__main__': pass