#!/usr/bin/python # -*- coding: UTF-8 -*- """ @author:andrew @file:Hybrid_Net001.py @email:admin@marques22.com @email:2021022362@m.scnu.edu.cn @time:2022/09/30 """ import os import torch from torch import nn from torchinfo import summary from torch import cat os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 输入时长 WHOLE_SEGMENT_SECOND = 30 # 呼吸采样率 RESPIRATORY_FRE = 4 # BCG 时频图大小 BCG_GRAPH_SIZE = (26, 121) class HYBRIDNET001(nn.Module): def __init__(self, num_classes=1, init_weights=True): super(HYBRIDNET001, self).__init__() self.lstm = nn.LSTM(input_size=1, hidden_size=16, num_layers=1, bidirectional=True, batch_first=True) self.right = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1), nn.BatchNorm2d(16), nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1), nn.BatchNorm2d(32), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1), nn.BatchNorm2d(32) ) self.classifier = nn.Sequential( # nn.Dropout(p=0.5), nn.Linear((120 * 32 + 32 * 16 * 4), 512), nn.ReLU(inplace=True), nn.Linear(512, num_classes), nn.Sigmoid() ) if init_weights: self.initialize_weights() def initialize_weights(self): for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Conv1d)): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法 if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值 nn.init.constant_(m.bias, 0) def forward(self, x1, x2): x1, (_, _) = self.lstm(x1) x2 = self.right(x2) # print(x1.shape) # print(x2.shape) x1 = torch.flatten(x1, start_dim=1) x2 = torch.flatten(x2, start_dim=1) x = torch.cat((x1, x2), dim=1) x = self.classifier(x) return x if __name__ == '__main__': model = HYBRIDNET001(1).cuda() summary(model, [(32, 120, 1), (32, 1, 121, 26)])