#!/usr/bin/python # -*- coding: UTF-8 -*- """ @author:andrew @file:Hybrid_Net014.py @email:admin@marques22.com @email:2021022362@m.scnu.edu.cn @time:2022/10/14 """ import os import torch from torch import nn from torchinfo import summary from torch import cat os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 修改激活函数 # 提高呼吸采样率 # 输入时长 WHOLE_SEGMENT_SECOND = 30 # 呼吸采样率 RESPIRATORY_FRE = 10 # BCG 时频图大小 BCG_GRAPH_SIZE = (26, 121) class HYBRIDNET021(nn.Module): def __init__(self, num_classes=2, init_weights=True): super(HYBRIDNET021, self).__init__() self.lstm = nn.LSTM(input_size=1, hidden_size=32, num_layers=2, bidirectional=True, batch_first=True) self.classifier = nn.Sequential( # nn.Dropout(p=0.5), nn.Linear(64, 8), nn.GELU(), nn.Linear(8, num_classes), ) if init_weights: self.initialize_weights() def initialize_weights(self): for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Conv1d)): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法 if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值 nn.init.constant_(m.bias, 0) def forward(self, x1): x1, (_, _) = self.lstm(x1) # print(x1.shape) x1 = x1[:, -1] x1 = torch.flatten(x1, start_dim=1) # print(x1.shape) # x2 = x2.squeeze() # x = torch.cat((x1, x2), dim=1) x = x1 x = self.classifier(x) return x if __name__ == '__main__': model = HYBRIDNET021().cuda() summary(model, [(32, 300, 1), (32, 3, 1)])