sleep_apnea_hybrid/exam/023/my_augment.py
2022-10-14 22:33:34 +08:00

69 lines
1.9 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:Marques
@file:my_augment.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/07/26
"""
from utils.Preprocessing import BCG_Operation
import numpy as np
from scipy.signal import stft
preprocessing = BCG_Operation()
preprocessing.sample_rate = 100
def my_augment(dataset):
if 1000 < dataset.mean() < 2000:
dataset[dataset == 0] = 1825
dataset[dataset < 1200] = 1225
dataset[dataset > 2400] = 2425
elif 2000 < dataset.mean() < 3000:
dataset[dataset == 0] = 2375
dataset[dataset < 1775] = 1775
dataset[dataset > 2975] = 2975
dataset -= 550
else:
print("something wrong")
# select_dataset = preprocessing.Butterworth(select_dataset, "lowpass", low_cut=0.7, order=3)
dataset -= dataset.mean()
dataset = dataset.dot(1 / 600)
dataset = preprocessing.Iirnotch(dataset)
dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6)
dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.7, order=6)
dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6)
dataset = {"low": dataset_low,
"high": dataset_high}
return dataset
def get_stft(x, fs, n):
print(len(x))
f, t, amp = stft(x, fs, nperseg=n)
z = np.abs(amp.copy())
return f, t, z
def my_segment_augment(dataset, SP, EP):
dataset_low = dataset["low"][int(SP) * 100:int(EP) * 100].copy()
dataset_high = dataset["high"][int(SP) * 100:int(EP) * 100].copy()
dataset_low = dataset_low[::10]
dataset_low = dataset_low.reshape(1, dataset_low.shape[0])
_, _, dataset_high = stft(dataset_high, 100, nperseg=50)
dataset_high = dataset_high.astype(np.float).T
dataset_high = dataset_high.reshape(dataset_high.shape[0], dataset_high.shape[1])
return dataset_low, dataset_high
if __name__ == '__main__':
pass