sleep_apnea_hybrid/exam/032/model/Hybrid_Net003.py
2022-10-14 22:33:34 +08:00

102 lines
2.8 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:andrew
@file:Hybrid_Net003.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/09/30
"""
import os
import torch
from torch import nn
from torchinfo import summary
from torch import cat
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# 修改激活函数
# 提高呼吸采样率
# 输入时长
WHOLE_SEGMENT_SECOND = 30
# 呼吸采样率
RESPIRATORY_FRE = 10
# BCG 时频图大小
BCG_GRAPH_SIZE = (26, 121)
class HYBRIDNET003(nn.Module):
def __init__(self, num_classes=2, init_weights=True):
super(HYBRIDNET003, self).__init__()
self.lstm = nn.LSTM(input_size=26,
hidden_size=16,
num_layers=1,
bidirectional=True,
batch_first=True)
self.right = nn.Sequential(
nn.Conv1d(in_channels=1, out_channels=8, kernel_size=20,
stride=2, padding=10),
nn.GELU(),
nn.MaxPool1d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm1d(8),
nn.Conv1d(in_channels=8, out_channels=16, kernel_size=3,
stride=1, padding=1),
nn.GELU(),
nn.MaxPool1d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm1d(16),
nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3,
stride=1, padding=1),
nn.GELU(),
nn.MaxPool1d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm1d(32)
)
self.classifier = nn.Sequential(
# nn.Dropout(p=0.5),
nn.Linear(4480, 512),
nn.GELU(),
nn.Linear(512, num_classes),
)
if init_weights:
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值
nn.init.constant_(m.bias, 0)
def forward(self, x1, x2):
# x1 = x1.view(x1.shape[0], -1, 5)
x1 = self.right(x1)
x2, (_, _) = self.lstm(x2)
# print(x1.shape)
# print(x2.shape)
x1 = torch.flatten(x1, start_dim=1)
x2 = torch.flatten(x2, start_dim=1)
x = torch.cat((x1, x2), dim=1)
# print(x.shape)
x = self.classifier(x)
return x
if __name__ == '__main__':
model = HYBRIDNET003().cuda()
summary(model, [(32, 1, 30 * RESPIRATORY_FRE), (32, 121, 26)])