55 lines
1.4 KiB
Python
55 lines
1.4 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: UTF-8 -*-
|
|
"""
|
|
@author:Marques
|
|
@file:my_augment.py
|
|
@email:admin@marques22.com
|
|
@email:2021022362@m.scnu.edu.cn
|
|
@time:2022/07/26
|
|
"""
|
|
from utils.Preprocessing import BCG_Operation
|
|
import numpy as np
|
|
from scipy.signal import stft
|
|
|
|
preprocessing = BCG_Operation()
|
|
preprocessing.sample_rate = 100
|
|
|
|
|
|
def my_augment(dataset):
|
|
dataset -= dataset.mean()
|
|
dataset = preprocessing.Iirnotch(dataset)
|
|
dataset = preprocessing.Butterworth(dataset, "lowpass", low_cut=20, order=6)
|
|
dataset_low = preprocessing.Butterworth(dataset, "lowpass", low_cut=0.5, order=4)
|
|
# dataset_high = preprocessing.Butterworth(dataset, "highpass", high_cut=1, order=6)
|
|
|
|
dataset = dataset_low[::10]
|
|
# "high": dataset_high}
|
|
return dataset
|
|
|
|
|
|
def get_stft(x, fs, n):
|
|
print(len(x))
|
|
f, t, amp = stft(x, fs, nperseg=n)
|
|
z = np.abs(amp.copy())
|
|
return f, t, z
|
|
|
|
|
|
def my_segment_augment(dataset, SP, EP):
|
|
dataset_low = dataset["low"][int(SP) * 100:int(EP) * 100].copy()
|
|
# dataset_high = dataset["high"][int(SP) * 100:int(EP) * 100].copy()
|
|
|
|
dataset_low = dataset_low[::10]
|
|
dataset_low = dataset_low.reshape(-1, 1)
|
|
|
|
# _, _, dataset_high = stft(dataset_high, 100, nperseg=50)
|
|
# dataset_high = dataset_high.astype(np.float).T
|
|
# dataset_high = dataset_high.reshape(dataset_high.shape[0], dataset_high.shape[1])
|
|
|
|
# return dataset_low, dataset_high
|
|
|
|
return dataset_low
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pass
|