sleep_apnea_hybrid/exam/033/model/Hybrid_Net013.py

77 lines
1.8 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:andrew
@file:Hybrid_Net014.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/10/14
"""
import os
import torch
from torch import nn
from torchinfo import summary
from torch import cat
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# 修改激活函数
# 提高呼吸采样率
# 输入时长
WHOLE_SEGMENT_SECOND = 30
# 呼吸采样率
RESPIRATORY_FRE = 10
# BCG 时频图大小
BCG_GRAPH_SIZE = (26, 121)
class HYBRIDNET012(nn.Module):
def __init__(self, num_classes=2, init_weights=True):
super(HYBRIDNET012, self).__init__()
self.lstm = nn.LSTM(input_size=1,
hidden_size=32,
num_layers=2,
bidirectional=True,
batch_first=True)
self.classifier = nn.Sequential(
# nn.Dropout(p=0.5),
nn.Linear(64, 8),
nn.GELU(),
nn.Linear(8, num_classes),
)
if init_weights:
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值
nn.init.constant_(m.bias, 0)
def forward(self, x):
x, (_, _) = self.lstm(x)
# print(x.shape)
x = x[:, -1]
x = torch.flatten(x, start_dim=1)
# print(x.shape)
x = self.classifier(x)
return x
if __name__ == '__main__':
model = HYBRIDNET012().cuda()
summary(model, [(32, 300, 1)])