sleep_apnea_hybrid/exam/042/model/Hybrid_Net021.py

79 lines
1.9 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:andrew
@file:Hybrid_Net014.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/10/14
"""
import os
import torch
from torch import nn
from torchinfo import summary
from torch import cat
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 修改激活函数
# 提高呼吸采样率
# 输入时长
WHOLE_SEGMENT_SECOND = 30
# 呼吸采样率
RESPIRATORY_FRE = 10
# BCG 时频图大小
BCG_GRAPH_SIZE = (26, 121)
class HYBRIDNET021(nn.Module):
def __init__(self, num_classes=2, init_weights=True):
super(HYBRIDNET021, self).__init__()
self.lstm = nn.LSTM(input_size=1,
hidden_size=32,
num_layers=2,
bidirectional=True,
batch_first=True)
self.classifier = nn.Sequential(
# nn.Dropout(p=0.5),
nn.Linear(67, 8),
nn.GELU(),
nn.Linear(8, num_classes),
)
if init_weights:
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值
nn.init.constant_(m.bias, 0)
def forward(self, x1, x2):
x1, (_, _) = self.lstm(x1)
# print(x1.shape)
x1 = x1[:, -1]
x1 = torch.flatten(x1, start_dim=1)
# print(x1.shape)
x2 = x2.squeeze()
x = torch.cat((x1, x2), dim=1)
x = self.classifier(x)
return x
if __name__ == '__main__':
model = HYBRIDNET021().cuda()
summary(model, [(32, 300, 1), (32, 3, 1)])