162 lines
6.3 KiB
Python
162 lines
6.3 KiB
Python
#!/usr/bin/python
|
||
# -*- coding: UTF-8 -*-
|
||
"""
|
||
@author:Marques
|
||
@file:load_dataset.py
|
||
@email:admin@marques22.com
|
||
@email:2021022362@m.scnu.edu.cn
|
||
@time:2021/12/03
|
||
"""
|
||
import sys
|
||
from pathlib import Path
|
||
import pandas as pd
|
||
import numpy as np
|
||
import torch
|
||
import yaml
|
||
from torch.utils.data import Dataset
|
||
from tqdm import tqdm
|
||
|
||
"""
|
||
1. 读取方法
|
||
# 无论是否提前切分,均提前转成npy格式
|
||
# 1.1 提前预处理,切分好后生成npy,直接载入切分好的片段 内存占用多 读取简单
|
||
使用此方法: 1.2 提前预处理,载入整夜数据,切分好后生成csv或xls,根据片段读取 内存占用少 读取较为复杂
|
||
"""
|
||
|
||
datasets = {}
|
||
|
||
|
||
# 减少重复读取
|
||
def read_dataset(config, augment=None):
|
||
data_path = Path(config["Path"]["dataset"])
|
||
try:
|
||
file_list = []
|
||
if data_path.is_dir():
|
||
dataset_list = list(data_path.rglob("*.npy_low_zscore.npy"))
|
||
dataset_list.sort()
|
||
file_list += dataset_list
|
||
elif data_path.is_file():
|
||
raise Exception(f'dataset path should be a dir')
|
||
else:
|
||
raise Exception(f'{data_path} does not exist')
|
||
except Exception as e:
|
||
raise Exception(f'Error loading data from {data_path}: {e} \n')
|
||
|
||
print("loading dataset")
|
||
for i in tqdm(file_list):
|
||
select_dataset = np.load(i, allow_pickle=True)[0]
|
||
# select_dataset = preprocessing.Butterworth(select_dataset, "lowpass", low_cut=20, order=3)
|
||
if augment is not None:
|
||
select_dataset = augment(select_dataset, config)
|
||
datasets[i.name.split("samp")[0]] = select_dataset
|
||
|
||
|
||
# 用第二种方法读取
|
||
class ApneaDataset(Dataset):
|
||
def __init__(self, config, dataset_type, select_sampno, segment_augment=None):
|
||
self.data_path = Path(config["Path"]["dataset"])
|
||
self.label_path = Path(config["Path"]["label"])
|
||
self.segment_augment = segment_augment
|
||
self.labels_info = None
|
||
self.labels = None
|
||
self.dataset_type = dataset_type
|
||
self.select_sampNo = select_sampno
|
||
self.disable_hpy = config["disable_hpy"]
|
||
self.apply_samplerate = config["apply_samplerate"]
|
||
|
||
# self._getAllData()
|
||
self._getAllLabels()
|
||
|
||
def __getitem__(self, index):
|
||
# PN patience number
|
||
# SP/EP start point, end point
|
||
# temp_label.append([sampNo, label[-1], i, hpy_num, csa_num, osa_num, mean_low, flow_low])
|
||
PN, segmentNo, label_type, new_label, SP, EP = self.labels_info[index]
|
||
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels_info[index]
|
||
|
||
if isinstance(datasets, dict):
|
||
segment = self.segment_augment(datasets[str(PN)], SP * self.apply_samplerate, EP * self.apply_samplerate)
|
||
return (*segment, self.labels[index], PN, segmentNo, label_type, new_label, SP, EP)
|
||
else:
|
||
raise Exception(f'dataset read failure!')
|
||
|
||
def count_SA(self):
|
||
# assert isinstance(self.disable_hpy, int)
|
||
return sum(self.labels)
|
||
|
||
def __len__(self):
|
||
return len(self.labels_info)
|
||
|
||
def _getAllLabels(self):
|
||
label_path = Path(self.label_path)
|
||
if not label_path.exists():
|
||
raise Exception(f'{self.label_path} does not exist')
|
||
|
||
try:
|
||
file_list = []
|
||
if label_path.is_dir():
|
||
if self.dataset_type == "train":
|
||
label_list = list(label_path.rglob("*_train_label.csv"))
|
||
elif self.dataset_type == "valid":
|
||
label_list = list(label_path.rglob("*_valid_label.csv"))
|
||
elif self.dataset_type == "test":
|
||
label_list = list(label_path.glob("*_sa_test_label.csv"))
|
||
# label_list = list(label_path.rglob("*_test_label.npy"))
|
||
elif self.dataset_type == "all_test":
|
||
label_list = list(label_path.rglob("*_sa_all_label.csv"))
|
||
else:
|
||
raise ValueError("self.dataset type error")
|
||
# label_list = list(label_path.rglob("*_label.npy"))
|
||
label_list.sort()
|
||
file_list += label_list
|
||
elif label_path.is_file():
|
||
raise Exception(f'dataset path should be a dir')
|
||
else:
|
||
raise Exception(f'{self.label_path} does not exist')
|
||
except Exception as e:
|
||
raise Exception(f'Error loading data from {self.label_path}: {e} \n')
|
||
print("loading labels")
|
||
for i in tqdm(file_list):
|
||
if int(i.name.split("_")[0]) not in self.select_sampNo:
|
||
continue
|
||
|
||
if self.labels_info is None:
|
||
self.labels_info = pd.read_csv(i).to_numpy(dtype=int)
|
||
else:
|
||
labels = pd.read_csv(i).to_numpy(dtype=int)
|
||
if len(labels) > 0:
|
||
self.labels_info = np.concatenate((self.labels_info, labels))
|
||
|
||
self.labels = (self.labels_info[:, 3] > self.disable_hpy) * 1
|
||
self.labels = torch.from_numpy(self.labels)
|
||
gpu = torch.cuda.is_available()
|
||
self.labels = self.labels.cuda() if gpu else self.labels
|
||
|
||
# self.labels_info = self.labels_info[:10000]
|
||
print(f"{self.dataset_type} length is {len(self.labels_info)}")
|
||
|
||
|
||
class TestApneaDataset2(ApneaDataset):
|
||
def __init__(self, config, dataset_type, select_sampno, segment_augment=None):
|
||
super(TestApneaDataset2, self).__init__(
|
||
config,
|
||
dataset_type=dataset_type,
|
||
select_sampno=select_sampno,
|
||
segment_augment=segment_augment,
|
||
)
|
||
|
||
def __getitem__(self, index):
|
||
PN, segmentNo, label_type, new_label, SP, EP = self.labels_info[index]
|
||
# PN, label, SP, EP, hpy_num, csa_num, osa_num, mean_low, flow_low = self.labels_info[index]
|
||
|
||
if isinstance(datasets, dict):
|
||
dataset = datasets[str(PN)]
|
||
segment = self.segment_augment(dataset, SP * self.apply_samplerate, EP * self.apply_samplerate)
|
||
return (*segment, self.labels[index], PN, segmentNo, label_type, new_label, SP, EP)
|
||
else:
|
||
raise Exception(f'dataset read failure!')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
pass
|