sleep_apnea_hybrid/exam/005/model/Hybrid_Net001.py
2022-10-06 23:08:35 +08:00

99 lines
2.8 KiB
Python

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:andrew
@file:Hybrid_Net001.py
@email:admin@marques22.com
@email:2021022362@m.scnu.edu.cn
@time:2022/09/30
"""
import os
import torch
from torch import nn
from torchinfo import summary
from torch import cat
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# 输入时长
WHOLE_SEGMENT_SECOND = 30
# 呼吸采样率
RESPIRATORY_FRE = 4
# BCG 时频图大小
BCG_GRAPH_SIZE = (26, 121)
class HYBRIDNET001(nn.Module):
def __init__(self, num_classes=1, init_weights=True):
super(HYBRIDNET001, self).__init__()
self.lstm = nn.LSTM(input_size=1,
hidden_size=16,
num_layers=1,
bidirectional=True,
batch_first=True)
self.right = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1)),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1),
nn.BatchNorm2d(16),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1)),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1),
nn.BatchNorm2d(32),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1)),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=(2, 2), padding=1),
nn.BatchNorm2d(32)
)
self.classifier = nn.Sequential(
# nn.Dropout(p=0.5),
nn.Linear((120 * 32 + 32 * 16 * 4), 512),
nn.ReLU(inplace=True),
nn.Linear(512, num_classes),
nn.Sigmoid()
)
if init_weights:
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # 何教授方法
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01) # 正态分布赋值
nn.init.constant_(m.bias, 0)
def forward(self, x1, x2):
x1, (_, _) = self.lstm(x1)
x2 = self.right(x2)
# print(x1.shape)
# print(x2.shape)
x1 = torch.flatten(x1, start_dim=1)
x2 = torch.flatten(x2, start_dim=1)
x = torch.cat((x1, x2), dim=1)
x = self.classifier(x)
return x
if __name__ == '__main__':
model = HYBRIDNET001(1).cuda()
summary(model, [(32, 120, 1), (32, 1, 121, 26)])